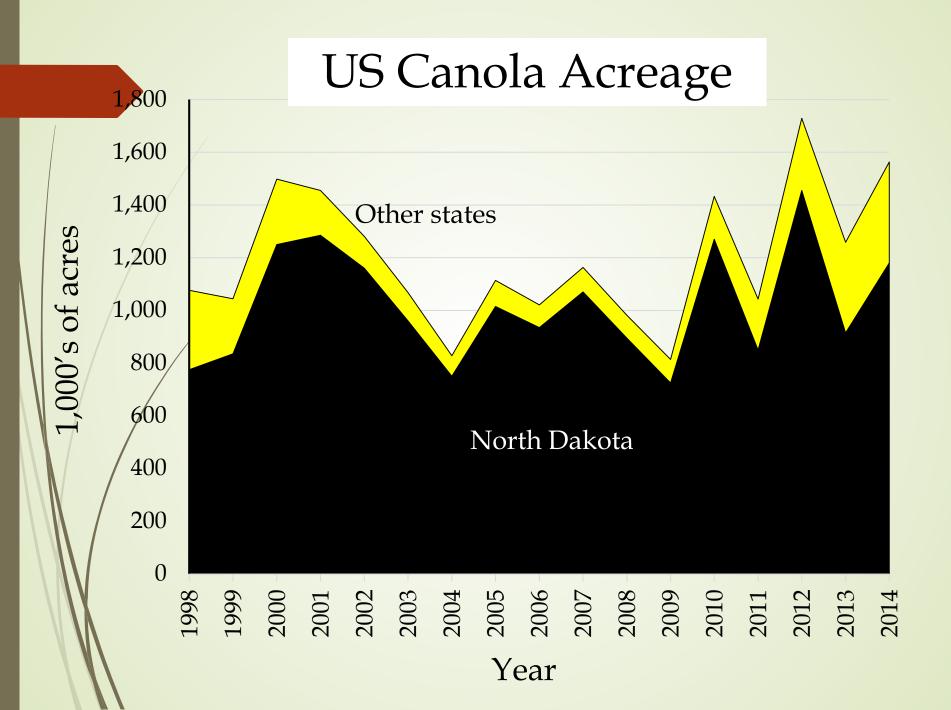
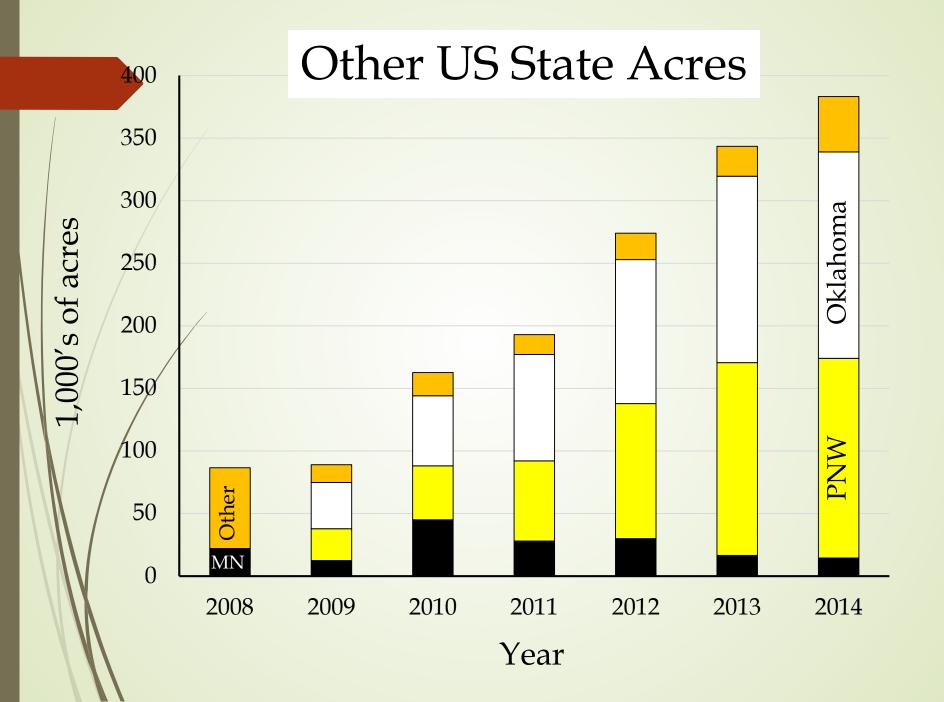
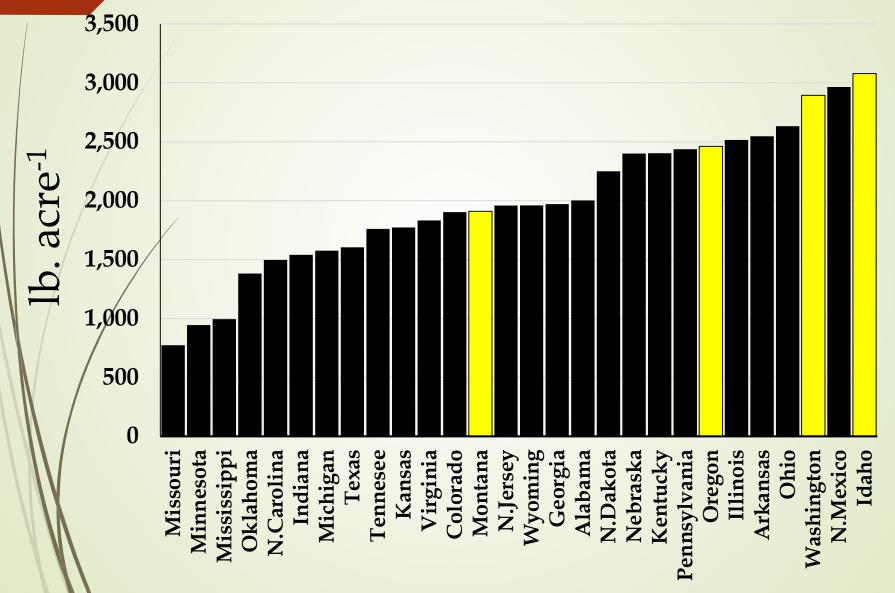
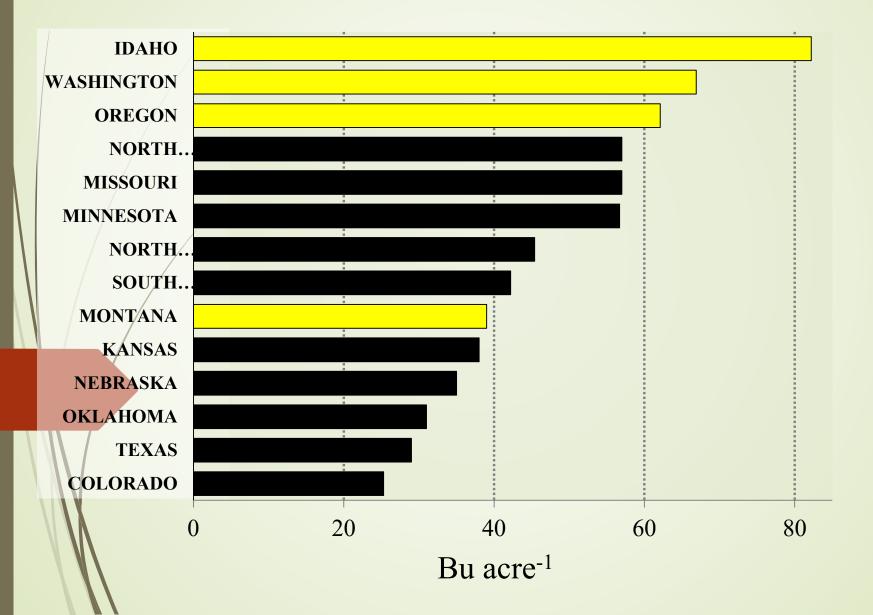

Improving canola production and production systems with genetic and agronomic advances to increase canola acreage in the Pacific Northwest.

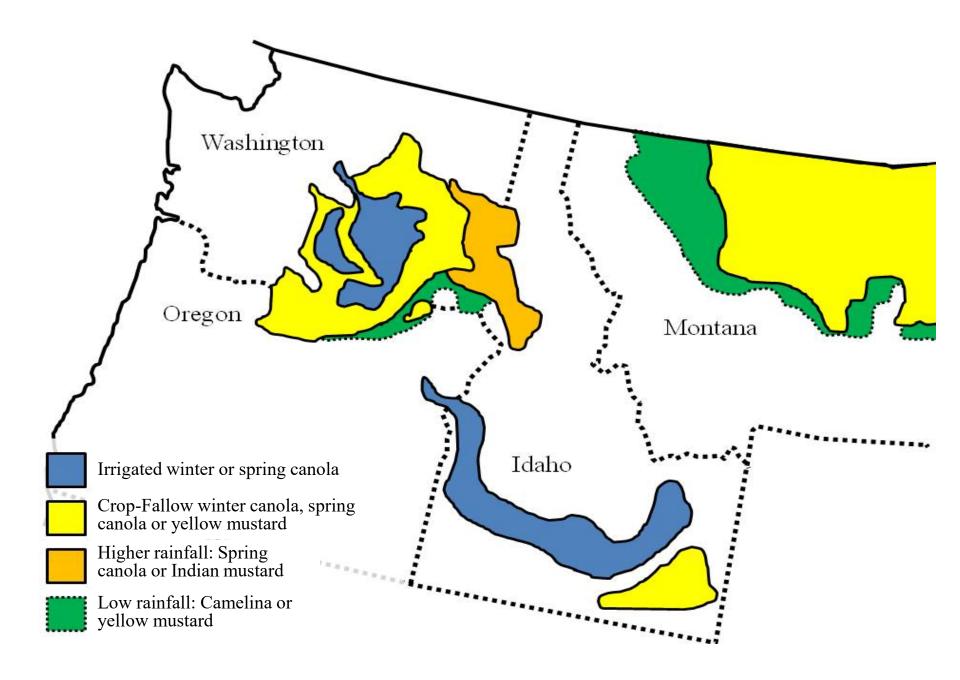

Jack Brown¹, Jim B. Davis¹, Kate Painter¹, Kurt Schroeder¹, Fangming Xiao¹, Aaron Esser², Don Wysoci³, Robert Stougaard⁴, and Chengci Chen⁴



¹University of Idaho, ²Washington State University, ³Oregon State University, ⁴Montana State University.


US Canola Acreage

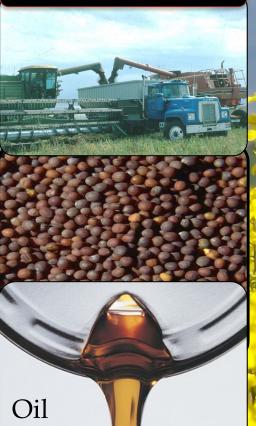




35 years of Cultivar Trials

US wheat yield by state harvested in 2013.

Potential Canola Acreage


Environment type	Total acres†	Crop	Canola acre	Seed yield	Canola oil	Canola seed meal
				- lb acre ⁻¹ -	tons	tons
Low rainfall	10.5	Spring canola	0	0	0	0
LOW TAIIITAII		Winter canola	400,000	2,500	200,000	400,000
Intermediate rainfall	1.6	Spring canola	50,000	1,300	13,000	26,000
		Winter canola	150,000	2,900	87,000	174,000
High rainfall	1.7	Spring canola	70,000	2,000	28,000	56 <i>,</i> 000
		Winter canola	20,000	3,200	12,800	25,600
Irrigated	1.5	Spring canola	60,000	2,800	33,600	67,200
		Winter canola	75,000	3,750	56,250	112,500
Total	15.0		825,000	18,450	430,650	861,300

Objectives

- ✓ Objective 1: Develop and identify canola cultivars that afford the highest productivity and greatest profitability for different agronomic zones in the PNW.
- ✓Objective 2. Quantify the effects of growing canola in rotations with wheat in the PNW.

Breeding Objectives

Yield

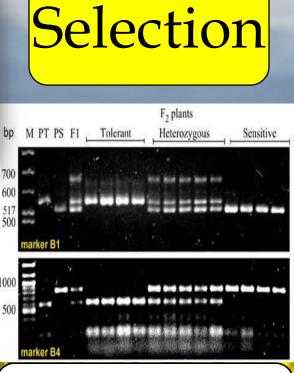
Content

Quality Food YELLOWST **Bio-fuel** Feed

Reduce inputs

Disease

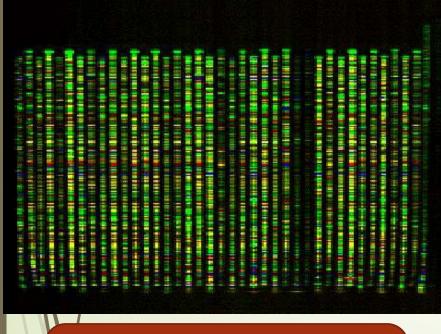
Insect Resistance



Field Trials

Tissue Culture

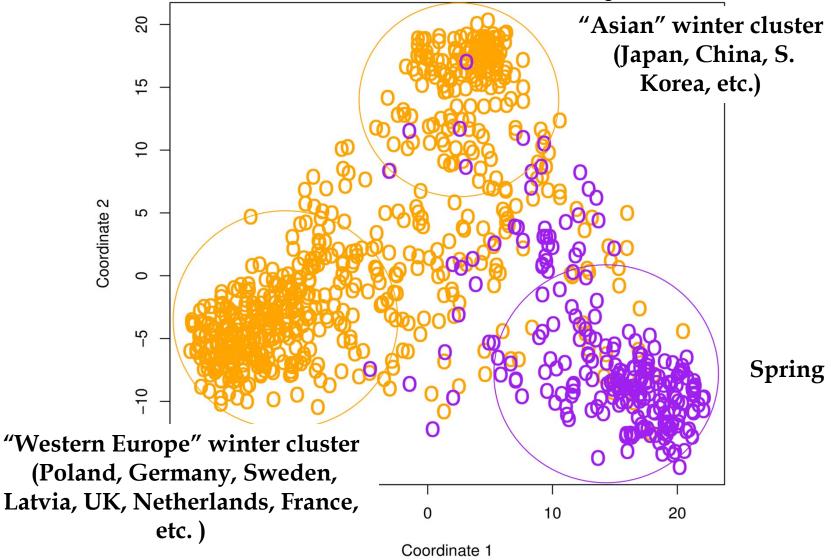
Molecular Markers



Disease Test

Quality Test

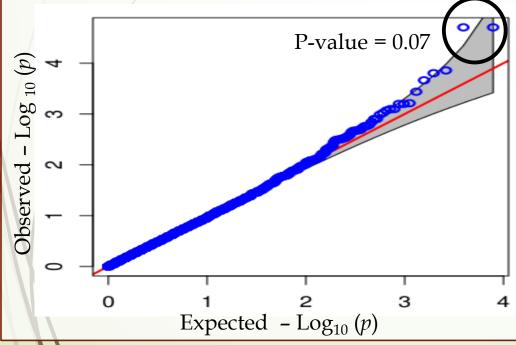
Genomic Wide Association Studies



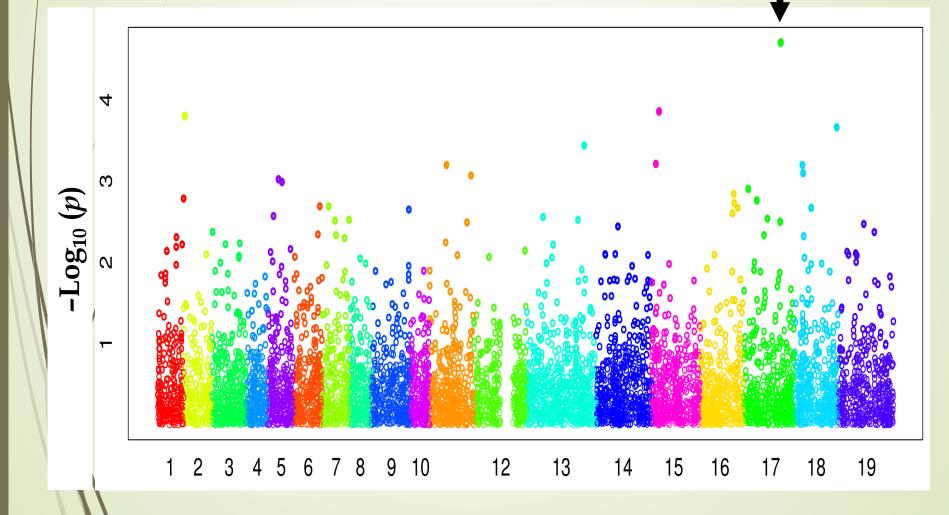
AAGTITTATA ANAATAAAGA AGTITTATIT GTILBATAGI OG AAGTNITATA AASATAAAGA AG TITATIT GTILBATAGI OG AAGTNITATA AASATAAAGA AG TITATIT GTILBATAGI OG C AAAATCTAAA C AAAATCTAAA 755C. AR ANGTTTTATA ANAATAAAGA ATAGATTAAT ATCTAAAATT ATATATTOTT ACCAAATTAT TETTTTAAAG ETCAATAGC ATAGATTAATSATOTAAAATSSATATATATOTTSACAAATTAT TETTTTAAAG ETCAATAGC ATAGATTAAT ATCTAAAATS ATAGATTGTT ACCAAATTAT TETTTTAAAG ETCAATAGC 755C.BR TOALTAGE 255C AR ΤΑΑΑΑΤ TATACATIG ΤΤΑ Ο Ο Α Α Α Τ Τ Α 1600-3366 AAAAT NATA CAT G CA A AT TA 1600 6018

210

900 genotypes 40K SNP's


Population Structure: Principal coordinate (PCO) analysis

PCOs based on 260 SNPs from SNP array data set


- Best Linear Unbiased Estimates (BLUE's)→
 observed yield values corrected for
 environment.
- Incorporated within-spring population structure and kindship as covariate in the GWA's.
- Top 20 low and high yielding accessions from 2014.

✓ stronger year and site effect.

BLUES_2014	Accession ID / cv name	Origin
Low yield	Ames 2777	Eur
Low yield	Matador	Eur
Low yield	Lisora	Eur
Low yield	Stellar	Am
Low yield	Gisora	Eur
Low yield	PI 470079	Asia
Low yield	Norin 5	Asia
Low yield	S. V. Gulle	Eur
Low yield	Mokpo 23	Asia
Low yield	Yonkokuban	Asia
Low yield	PI 633124	Eur
Low yield	Mokpo 32	Asia
Low yield	PI 458979	Am
Low yield	Bronowsky	Eur
Low yield	Svalof gullen	Eur
Low yield	Norin 8	Asia
Low yield	IMC_202	Am
Low yield	PI 458936	Eur
Low yield	PI 470018	Asia
Low yield	Gulliver	Eur
High yield	03IL5.6.1	Am
High yield	04SC28.4.3	Am
High yield	05SC.14A9.21.6	Am
High yield	05SC.1A4.10.1	Am
High yield	05SC11.A1.35.2	Am
High yield	07SC38.16_duplo	Am
High yield	07SI.42.3	Am
High yield	5SC11A1.24.6	Am
High yield	5SC11A1.8.1	Am
High yield	5SI.BA5_JB8.16	Am
High yield	Estrade	Am
High yield	IMC 105	Am
High yield	KAB36_LL	Am
High yield	Pioneer_46A76	Am
High yield	PM.2	Am
High yield	Profit	Am
High yield	UISC001.3.5	Am
High yield	UISC003.1.17	Am
High yield	UISH00.3.19.23	Am
High yield	PI 432392	Asia

Manhattan plot

Winter Kill

Cold & Drought Tolerance

- Develop cold- and drought-tolerant canola varieties that will efficiently utilize water and express extreme winter hardiness.
- ✓ The RC12A gene that plays a significant role in abiotic stress tolerance will be genetically manipulated into 'Amanda' and '06UIWC.1' winter canola.
- The RC12A gene encodes for a plasma membrane-related protein that is specifically related to cold stress tolerance.

Cold & Drought Tolerance

- Two approaches to manipulate the RC12A gene.
 - One is over-expression of the endogenous canola *RC12A* gene (*BnRC12A*);
 - the other one is heterogeneous expression of the *Arabidopsis RC12A* gene (*AtRC12A*) in canola.
- ✓ In both cases, the RC12A gene (BnRC12A or AtRC12A) will be cloned into a strong CaMV 35S promoter-driven plant expression vector and over-expressed in the locally-adapted winter canola cultivars and advanced breeding lines.

Cold & Drought Tolerance

We have generated the necessary cDNAs from both *Arabidopsis* and canola plants.
 Cloning the *RC12A* gene from these cDNA's is in process.

Pacific Northwest Cultivar Variety Trials

- 616 different spring canola cultivars from 30 different companies have been tested.
- 453 different winter canola varieties have been tested from 20 different private and commercial breeding.

Winter Canola

Cultivar	Mean	2014	2013	2012
Amanda	2,583	3,546	3,515	3,833
Athena	2,461	3,350	3,439	3,682
06.UIWC.1	2,660	3,543	3,739	4,058
05.UIWC.15.7.5 ¹	2,430	3,345	3,367	3,599
HyClass-125RR ²	2,347	2,881	2,776	3,825

¹ IMI Resistant; ² Roundup Ready,

Spring Canola Cultivars

Cultivar	Mean	2015	2014	2013
Westar	1,754	1,723	1,788	1,902
HyClass.955 RR ¹	2,299	2,387	2,420	2,499
DKL30-42 RR ¹	2,259	2,334	2,283	2,546
InVigor-L139LL ²	2,378	2,213	2,241	2,582
Cara CL ³	1,828	1,706	1,695	1,831
Empire	1,960	1,917	1,855	2,095
07SC27.12.B3	1,837	1,703	1,775	1,975

¹ Roundup Ready, ² LibertyLink, ³IMI resistant

http://www.cals.uidaho.edu/brassica/ http://webpages.uidaho.edu/jbrown/brassica/

Pacific Northwest

Winter Canola

Variety Trial

2005-2006

Jack Brown University of these

Pacific Northwest Spring Canola Variety Trial 2006

Jir

Univ

Ur

Pacific Northwest

Mustard

Variety Trial

2006

Pacific Northwest Agriculture

We must reduce soil erosion and improve water and air quality.



Pesticide applications cause environmental concerns.

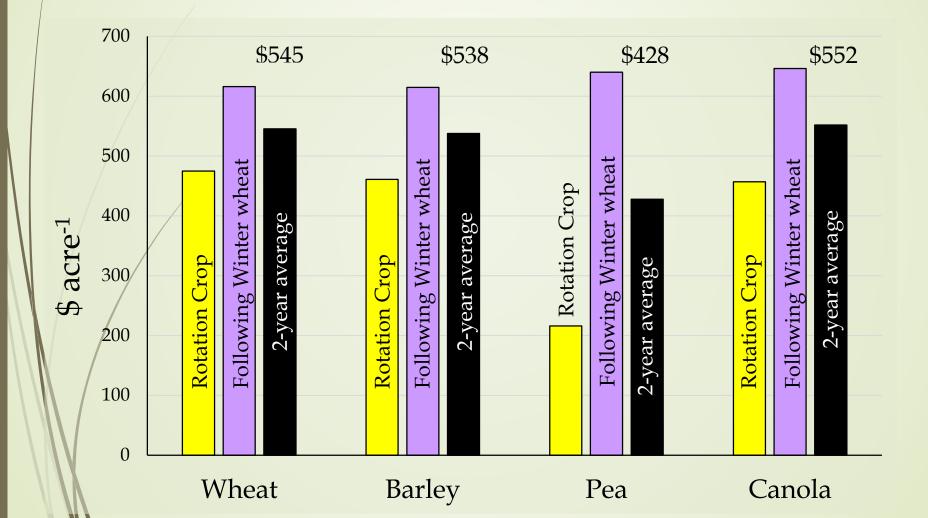
Ron Henning's

www.lincoln-adams.wsu.edu/agriculture

Aaron Esser: County Director, Adams County, WSU

Date:	20)07	20	09	
				Gross	Gross
	Yield	Gross \$	Yield	Return	Return
Treatment	(#/ac)	(\$/ac)	(bu/ac)	(\$/ac)	(\$/ac)
Wheat	2,602	\$355	34.1	\$142	\$496
Canola	1,724	\$293	47.5	\$197	\$490
Sig.	0.01	0.05	0.05	0.05	n.s.

Aaron Esser: County Director, Adams County, WSU



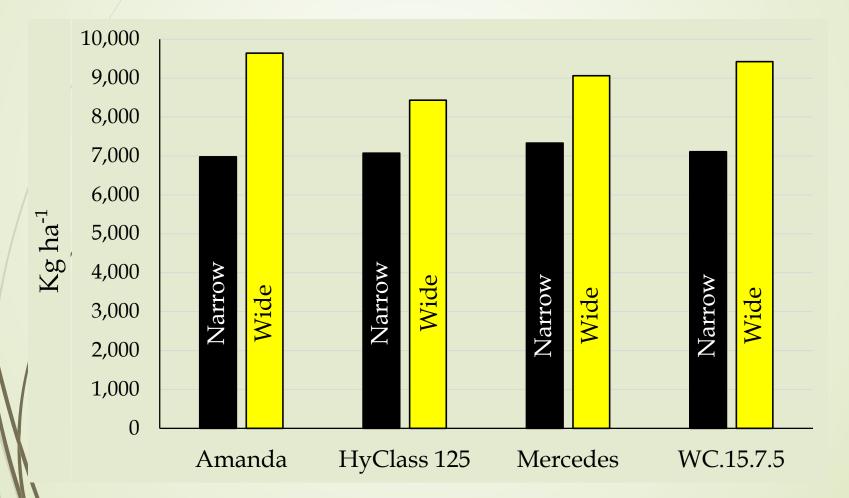
Pre-Proposal Research

Gross Crop Returns

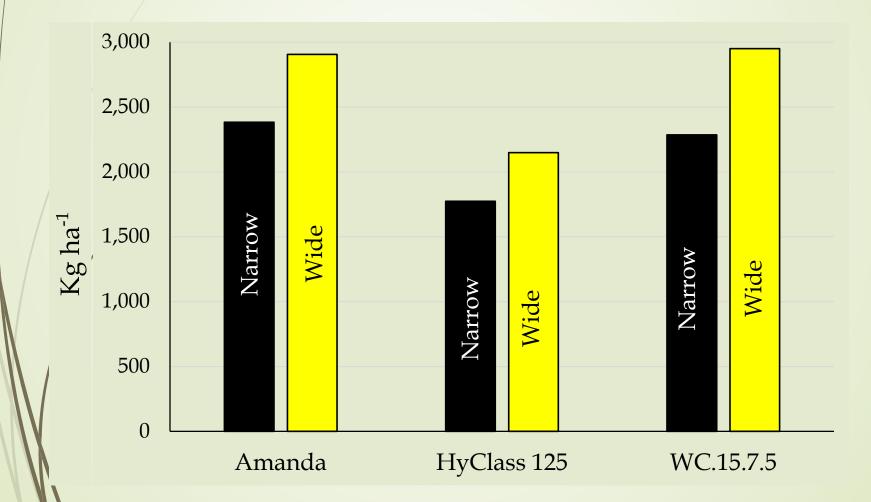
Crop Rotation Effects

Study Site	Year 0	Year 1	Year 2	Year 3
		Spring canola		
ID Spring	Spring	Spring pea	Winter wheat (SWWW)	
Rotation	wheat	Spring barley		
		Spring wheat		
ID Winter	Winter	Winter canola	Winter wheat	
	wheat &	Austrian winter pea	(SWWW)	
Rotation	Fallow	Winter wheat		
WA Spring	Spring	Spring canola	Winter wheat	
1 0	Spring barley	Spring wheat	(HRWW)	
Rotation		Spring Pea		
WA Winter		Winter canola	Corring wheat	
	Fallow	Austrian winter pea	Spring wheat (HRSW)	
Rotation		Winter wheat	(111377)	
	Fallow	Winter canola		
OR Winter		Austrian winter pea	Fallow	Winter wheat
Rotation		Winter triticale	Fallow	(SWWW)
		Winter wheat		

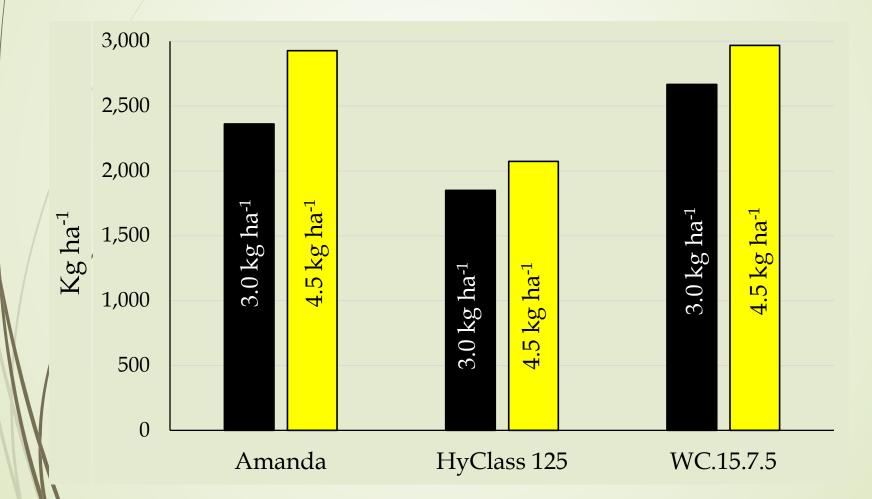
Objectives


- Objective 3. Determine the effects of row spacing, seeding rate, planting date, and mowing on winter survivability and productivity of early-planted winter canola in the PNW.
- ✓ Objective 4. Survey the PNW's potential for development of blackleg.

Row Spacing/Seeding Rate


-

- ✓ Four cultivars (Amanda, HyClass 125, Mercedes, and WC.15.7.5);
- Two planting dates (late June & early August);
- August planting only (mowed and not mowed);
- ✓ Two locations (Moscow & Genesee);
 ✓ Two row spacing (25 cm and 50 cm);
 ✓ Four replicates treatment⁻¹.


Row Spacing/Seeding Rate (Fall plant biomass)

Row Spacing/Seeding Rate (Seed Yield 2015)

Row Spacing/Seeding Rate (Seed Yield 2015)

Blackleg on Canola

St Regis

90

Northern Idaho Panhandle

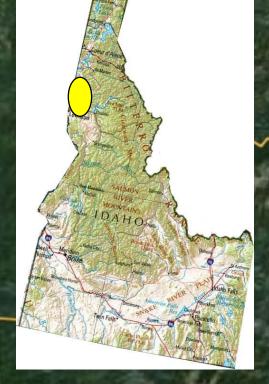
480 Rd

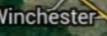
Tekoa

ohn

Colfax

Deary Elk River Pullman A 3204-3206 Plant Science Rd


> A 1 h 59 min 90.0 miles


Pierce

Trautman Rd Kamiah

Kooskia

Cottonwood

Nezperce

Greencreek

95

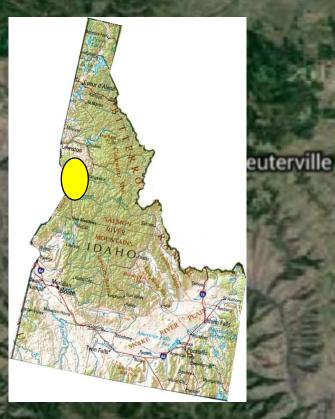
0

Jack

12

Koos

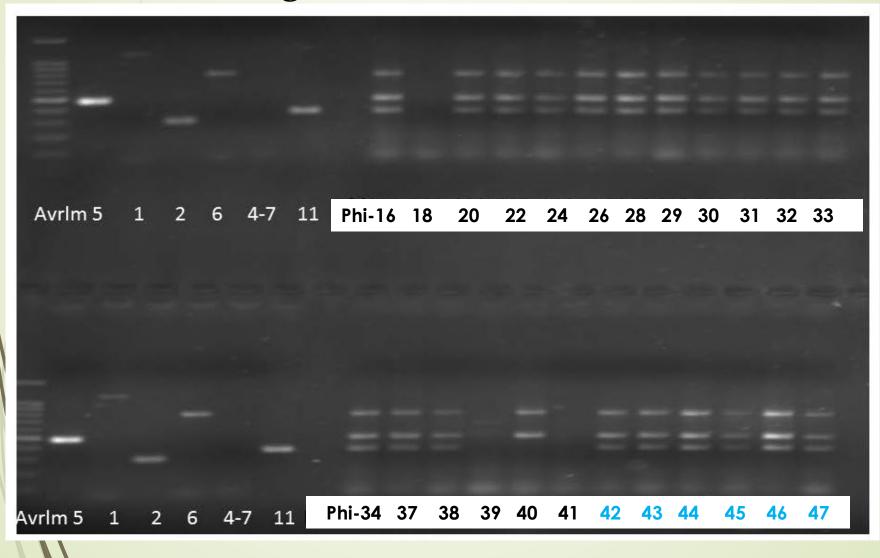
Stite


Luke's

•Yellowbrook Rd

Kamiah

Idaho Camas Prairie


Cottonwood

95

PCR differentiations of 6 Avr genes of 24 isolates

Distribution of *L. maculans* race structure from different locations

Location	L. Muculans races	# Isolates
Willamette	Avr-3-5-6-7-11-LepR1	2
Valley, OR	Avr-5-6-7-11-LepR1	4
	Avr-1-3-4-5-6-7-9-11-LepR1-LepR2-(LepR3)	4
Lewiston, ID	Avr-1-3-4-5-6-7-9-11-LepR1-(LepR3)	1
	Avr-1-5-6-7-9-11-LepR1-(LepR3)	1
	Avr-5-6-7-11-S-LepR1	10
	Avr-5-6-7-11	1
	Avr-1-2-5-6-7-11-LepR1	1
Camas	Avr-5-6-11	1
Prairie, ID	Avr-2-5-6-7-11-S-LepR1	1
V	Avr-1-2-3-4-S-LepR1-LepR2	1
	Avr-5-6-7-9-LepR1	1
N/	Avr-3-5-6-7-11-LepR1	2

Blackleg on Canola

Extension and outreach

- ✓ Grower days;
- ✓ Field demonstrations;
- Extension handouts bulletins;
- ✓ News articles;
- ✓ Web sites and Tweets.

Questions