Comparison of Traditional Canola, *Low-Poly* Canola, and Rapeseed Meals as Modifiers of Bovine Milk Fatty Acid Profile

A. N. Hristov¹, C. Domitrovich¹, A. Wachter¹, T. Cassidy¹, K. J. Shingfield², J. Davis³, and J. Brown³

¹Department of Dairy and Animal Science, Pennsylvania State University, University Park, PA 16802; ² MTT Agrifood Research Finland, FI 31600, Jokioinen, Finland; ³Plant Soil and Entomological Sciences Department, University of Idaho, Moscow, ID 83844

NRC, 2001

Canola meal composition

Penn State Experiment

- Eight lactating dairy cows; 109 ± 15.1 days in milk at the beginning of the trial in a replicated 4 × 4 Latin square design trial
- □ Average milk yield: 49 ± 2.1 kg/d (108 lbs/d)
- □ One square, 4 cows, were ruminally cannulated
- □ Four, 17-d periods (12 d for adaptation)
- □ Treatments were canola/rape meals fed at around 12-13% of DM:
 - (1) traditional, solvent-extracted canola meal (CONTROL);
 - (2) traditional, mechanically-extracted canola meal (CANOLA);
 - (3) low-polyunsaturated, mechanically-extracted canola meal (LOWPOLY);
 - (4) low-glucosinolate, mechanically-extracted rapeseed meal (RAPESEED)
- Data analyzed using PROC MIXED; cow was random

Analyses from DairyOne

Chemical composition of the meals

CP, % of DM

% of DM	Control	Canola	LowPoly	Rape
Crude protein	43.0	32.8	45.2	34.3
NDF	33.3	28.3	25.7	34.1
NFC	20.3	21.1	13.7	12.1
NEL, Mcal/kg	1.74	2.32	2.37	2.35

Fatty acid composition of canola and rapeseed meals (g/100 g FA)

Meal	EE, %	16:0	18:0	18:1	18:2	18:3	20:1	22:1
CONTROL	3.1	6.5	1.4	63.1	25.8	2.7	ND	ND
CANOLA	16.1	5.1	1.9	60.0	20.3	9.0	1.2	0.1
LOWPOLY	13.7	3.6	2.5	76.1	10.1	3.5	1.5	0.1
RAPESEED	17.9	3.3	1.2	16.7	12.8	6.4	9.8	42.0

EE from DairyOne

Basal diet chemical composition

% of DM	Control	Canola	LowPoly	Rape
СР	16.0	14.9	16.6	15.1
NDF	31.1	31.3	31.0	32.1
Ether extract	3.9	5.5	5.2	5.7
NEL, Mcal/kg	1.48	1.55	1.56	1.57
NEL intake, Mcal/d	45.8	45.3	45.0	44.3
MP intake, g/d	3,393	3,013	3,269	2,926
MP balance, g/d	229	-29	221	-36

PENNSTATE

Rumen fermentation data

Item	Control	Canola	LowPoly	Rape	SEM	P =
рН	6.25b	6.34ab	6.36a	6.25b	0.059	0.041
VFA, mM	125.4	120.9	115.8	119.7	5.37	0.27
Acetate	74.7a	68.8b	65.6b	69.5b	2.28	0.006
Propionate	29.5	31.8	29.8	29.7	3.11	0.58
Butyrate	15.6	14.4	14.2	14.8	0.66	0.39
Ammonia, mM	6.3	5.1	6.3	6.5	0.67	0.41

Estimated microbial protein synthesis

Total tract apparent digestibility

Digestibility, %	Control	Canola	LowPoly	Rape	SEM	P =
DM	61.2ab	61.8ab	60.8b	62.5a	0.69	0.10
ОМ	62.9	63.2	62.5	63.9	0.71	0.17
Ν	59.7	59.8	62.4	60.2	0.90	0.21
NDF	36.0ab	36.0ab	34.5b	38.6a	1.64	0.033
ADF	27.7b	26.7b	26.3b	30.6a	1.37	0.026

Production effects

ltem	Control	Canola	LowPoly	Rape	SEM	P =
DMI, kg/d	30.9a	29.3b	28.9b	28.3b	0.81	0.001
Milk, kg/d	47.1 a	44.9b	46.7ab	45.0b	2.11	0.047
3.5% FCM, kg/d	41.7a	39.7b	41.0ab	40.8ab	2.24	0.11
3.5 FCM/DMI	1.35c	1.35bc	1.41ab	1.45a	0.057	0.021
Milk fat, %	2.81	2.80	2.75	2.94	0.201	0.54
Milk protein, %	2.98	3.00	2.95	2.93	0.053	0.32
MUN, mg/dl	13.3b	12.6b	14.7a	12.6b	0.87	<0.001

Manure gas emissions measurements

Manure ammonia emissions

Effects on milk FA composition

Chillard et al., 2009

Free, unsaturated FA may reduce intake and milk yield

Penn State experiment: milk fatty acids $-\Sigma C18:1$

Milk fatty acids – Σ saturated

Milk fatty acids – Σ MUFA

Milk fatty acids $-\Sigma transFA$

Milk fatty acids $-\Sigma CLA$

Conclusions

- □ High-oil canola and rapeseed meals:
- reduced DMI of high-producing dairy cows
 - This resulted in reduced milk yield, except LowPoly
 - LowPoly and rapeseed increased feed efficiency
- Ruminal acetate concentration was reduced by the experimental meals, but total tract fiber digestibility was not affected
- □ LowPoly increased manure ammonia emissions
- The experimental meals had a profound effect on milk fatty acid profile, reducing concentration of total saturated and increasing the sum of monounsaturated and *trans* fatty acids compared with the control

