Impact of North Dakota Growing Location On Canola Biodiesel Quality

US Canola Research Conference Long Beach CA, Nov 2-3, 2010

Ρ

MN

BACKGROUND

- 730,000 acres canola harvested in ND, 2009 (90% US pro
- Canola as a feedstock for biodiesel
 - high monounsaturated (oleic) low saturated fat
 - (\uparrow cold flow benefits associated with \downarrow saturated fats)
- Cloud point Temperature wax crystals appear in solution predictor of cold flow properties
- Biodiesel quality may deteriorate rapidly in storage
- **Concerns:** does growing location and/or canola variety im biodiesel cold flow properties or oxidative stability?

OBJECTIVES

- Characterize variability in canola biodiesel cloud point and oxidative stability among several ND locations and years.
- Two experiments were conducted:
 - Exp. 1 bulked canola varieties sampled across 2003-2 were processed and evaluated.

Exp. 2 - One canola variety, Interstate Hyola 357, was evaluated at two locations over four production years.

		MATERIALS	
		Canada	
МТ	Wi 8-W;9-W Experiment 1 2003 - (3) 2004 - (4) 2005 - (5) 2006 - Cavalier - (6C) 2006 - Ward - (6W) 2007 - Ward-2 (7-2) 2007 - Ward-5 (7-5) 2008 - Williams - (8-W) 2008 - Cavalier - (8-Cv) 2008 - Cass - (8Cs) 2009 - Williams - (9-W) 2009 - Cass - (9Cs)	3 6W 7-2;7-5 M We <u>Experiment 2</u> 2003 - Griggs (G) 2003 - McClean (M) 2004 - Renville (R) 2004 - Renville (R) 2004 - Pennington (P)* 2005 - Towner (T) 2005 - Towner (T) 2007 - Williams (Wi) 2007 - Cavalier (C) 2	4 5 C 6C 8-Cv; 9-Cv G

Figure 1. North Dakota canola harvest locations.

Experiment 1:

- Canola varieties were combined from three locations in each of 2003, 2004, and 2005, and analyzed as one bulked sample per year (Fig 1).
- Samples were collected and analyzed separately from two or three locations in 2006, or 2008 and 2009, respectively. In 2007, canola biodiesel was processed from two varieties: Liberty 2663 and InVigor 5550 located in Ward county – (7-2 and 7-5)

Experiment 2:

Biodiesel was processed from a single variety, Interstate Hyola 357 RR

P -Pennington county, Minnesota

Darrin M. Haagenson and Dennis P. Wiesenborn

Agricultural & Biosystems Engineering Dept., North Dakota State University, Fargo ND 58105, D.Wiesenborn@ndsu.edu

ND ANALYSIS

	BIODIESEL PROCESSING A
oduction)	 Seed was cleaned according to USDA-GIPSA methods Oil content of intact seed was quantified by NIRS Biodiesel was produced from seed via <i>in situ</i> alkaline trans Seed was coffee ground and flour was dried at 70°C for 3 I TE was conducted in 500 mL Erlenmeyer flasks, 60°C sha flour equivalent oil wt = 40g 275:1:1.05 molar ratio of methanol : triacyglyceride : biodiesel refined with water washing. biodiesel pooled from duplicated rxn flasks to obtain
	 Fatty acid profiles of canola oil and biodiesel determined by according to methods of Haagenson et al. (2010)
npact	 Iodine value (IV) was estimated from the fatty acid compose (AOCS - Cd 1C-85)
	 Biodiesel quality (ASTM D6751-09) kinematic viscosity (40°C) acid value total glycerin (SafTest, MP Biomedical)
	* oxidative stability index (Omnion, OSI)
	 Experimental design - completely randomized, 3 replicates Data were analyzed using ANOVA E protected LSD (B< 0.05) was calculated for mean completed
2009	RESULTS
	 Biodiesel (BD) processing quality BD acid number, kinematic viscosity, water, and to to CP and OSI analysis to ensure high quality bioc
	Table 1. No Significant differences in process-dep
	Acid Kinomatic Mata

	Acid Number (mg KOH/g)	Kinematic Viscosity (mm²/s)	Water & Sediment (vol%)	Total Glycerin (wt%)
Experiment 1	0.16	4.6	0.036	0.040
Experiment 2	0.16	4.7	0.035	0.041
ASTM Limits	0.50 max	1.9- 6.0	0.050 max	0.240 max

Figure 2. Cloud point and Oxidative Stability from Exp 1 (A, B) and Exp 2 (C, D). n = 3, means followed by the same letter are not significantly different (P<0.05)

- sesterification (TE) h or until 1.0% moisture d.b. aker bath, 200rpm, 6 h
- KOH
- sufficient volume for analysis by GC
- sition
- * karl fischer moisture
- * cloud point
- arisons
- otal glycerin were measured prior diesel was obtained (Table 1).

pendent biodiesel quality factors.

Tabl

Tabl satu

Fatty Acid		wt %			Exp	Year Location	Bioc	Biodiesel	
Pa	almitic (1	mitic (16:0)		1				Saturatio	
S	tearic (18	8:0)	2.	3				Sat	IV
	Oleic (18	:1)	62	5		1	2003 – Bulked	8.17	113
Linoleic (18:2)		8:2)	19.1				2004 – Bulked	8.41	114
		18.3					2005 – Bulked	8.11	114
			1.	6			2006 – Ward	7.24	115
Ara	achidic (2	20:0)	0.0	6			2006 – Cavalier	7.25	123
Ga	adoleic (2	20:1)	1.	0			2007 – Ward – 2	7.71	119
B	ehenic (2	2:0)	0.3	3			2007 – Ward – 5	7.07	121
Lig	noceric	(24:0)	0.2	2			2008 – Cavalier	7.25	115
							2008 – Cass	7.43	115
							2008 – Williams	7.83	114
						2009 – Cavalier	7.64	117	
L Correlation (r) of BD fatty acid				d		2009 – Cass	7.49	115	
ion and temperature with CP OSI				ISI		2009 – Williams	7.92	115	
					2	2003 – Griggs	8.17	108	
	C	СР		OSI			2003 – McClean	8.41	105
	r	p value	r	p value			2004 – Renville	8.11	114
at ^a	-0.41	0.27	0.65	0.06]		2004 – Pennington	7.24	114
V	0.21	0.58	-0.53	0.14			2005 – Wells	7.25	118
Cb	0.29	0.45	-0.36	0.35			2005 – Towner	7.71	111
							2007 – Williams	7.07	106

- Cloud point (CP) was impacted by year and location (Fig 2A, 2C) --> CP Temperatures ranged from -0.1 to -2.4°C
- Oxidative stability index (OSI) \downarrow with \uparrow storage, and varied between locations within a year (Fig 2B, D) --> All OSI values met the 3h min standard (3 h), except 2004
- No significant difference in biodiesel fatty acid composition among locations or varieties examined in this study.
- Variability in biodiesel iodine value was 108 to 123.
- (+) relationship between saturation and OSI, and (-) relationship between IV and OSI; although not statistically significant, increasing sample population may increase level of detection
- Although variation in fatty acid composition was small, the variability in CP and OSI among ND growing locations and years suggests either differences in minor constituents (antioxidants, waxes) or environmental seed stress.

ACKNOWLEDEMENTS, REFERENCES

The authors are thankful for research support from:

- ND Ag Exp Station and ND Center of Excellence for Oilseed Development Mukhlesur Rahman, NDSU Plant Science and Barry Coleman, Northern Canola Growers Association for kindly providing canola seed
- Harjot Sidhu and Katherine McKinnon for technical support

DISCUSSION

- Haagenson et al 2010. J Am Oil Chem Soc 87:1351-1358 DOI 10.1007/s11746-010-1607-9