Great Plains Region - National Canola Research Program

TITLE: Development and Management of Canola in the Great Plains START: 09/01/09 TERM: 08/31/10 FY: 09 GRANT YEAR: 2009 GRANT AMOUNT: \$210,000

GREAT PLAINS REGIONAL DIRECTOR: Dr. Gary Pierzynski, Kansas State University **PROJECT DIRECTOR:** Dr. J. Ernest Minton, Kansas State University **CO-PROJECT DIRECTOR:** Mr. Michael J. Stamm, Kansas State and Oklahoma State Univ.

Objectives:

The long-term goal of this multi-state, multidisciplinary project is to facilitate the adoption of winter canola as a viable rotational crop for the Great Plains and the southern High Plains. Researchers have adopted the high-priority area winter canola production systems, including, but not limited to genetic improvement, and the following supporting objectives to aid in facilitating the program.

- 1. Continue the evaluation and development of high-yielding, locally adapted canola cultivars for the region. Priority objectives of the breeding project include: stand establishment and winter survival, tolerance to sulfonylurea herbicide carry-over and post-application of glyphosate herbicide, yield potential, quality of the grain and extracted oil, disease and pest resistance, shatter resistance, and forage quality.
- 2. Improve canola production systems in the region by addressing agronomic management issues including: planting date and systems, cropping systems, tillage systems, harvest management, irrigation, insect control, and forage production.
- 3. Extend production and marketing technology for canola through appropriate, coordinated technology transfer programs. Through technology transfer activities demonstrate to growers that winter canola is a viable rotational oilseed and/or grazing crop for the Great Plains and the southern High Plains.

Approach:

The winter canola breeding and production management program, established at K-State in 1991, has been supported by funding from the National Canola Research Program (NCRP) for almost two decades. The NCRP provides a structure to encourage multidisciplinary research networks that enhance limited state and industry resources, and it is funded through the Supplemental and Alternative Crops Competitive Grants Program (SACC). The Great Plains Canola Research Program (GPCRP), administered by K-State, fits the defined role of the NCRP as it links together researchers from the states of CO, KS, MO, NE, NM, OK, and TX who are interested in increasing winter canola production and acreage in the region.

Beginning in year 2009, the Great Plains Canola Research Program was strengthened by the inclusion of a research group centered in the southern High Plains (SHP). The SHP group received funding from the SACC grant program from 2007-2009. The needs of producers in this area are similar to those across the broader Great Plains region. SHP researchers provide expertise in the areas of deficit irrigation, extension education, and forage biomass for grazing. The area averages over 5 million wheat acres annually and 30% is irrigated. Producers are interested in the conventional and glyphosate weed control options provided by winter canola.

Throughout its long history, the needs of the Great Plains region have been canola variety development and production research. Researchers are developing new crop production systems, and adapted winter canola cultivars are necessary to sustain these systems. Therefore, the program has developed a coordinated testing network. Each group is required to perform some variety testing. The distribution of funds to researchers across the region is outlined in **Table 1**.

Stakeholder input is gained through the External Research and Advisory committee (**Table 2**). This committee meets annually to discuss the program's research progress, suggest new areas of research concentration, and identify hot-button topics important to canola growers. The committee includes producers, industry personnel, and canola researchers and extension experts throughout the region. Each member is given the opportunity to share his or her views of the direction of the canola breeding and management program. Another important opportunity to garner stakeholder input is the annual canola production conference held in Enid, OK. This conference brings together all entities involved with canola production including farmers, researchers, extension specialists, industry personnel, marketing analysts, USDA representatives, agricultural media, and many others. Between 200 and 400 people attend the annual conference.

A multifaceted technology transfer program using extension and research expertise, in cooperation with industry personnel and growers, is being implemented. A list of meeting dates and numbers attending is provided in **Table 3.** The annual NWCVT report of progress (see list of references) is an important publication for this effort as it provides information to growers on the performance of the latest public and private canola varieties and hybrids. Researchers participate in a number of field days and extension meetings, write agronomy production updates, and give radio and television interviews.

Progress Report:

The following report of progress addresses research studies established across the southern Great Plains and High Plains. Several new studies were initiated in fall 2009 on the High Plains and these have not reached fruition. Preliminary results are limited but observations are included where available. The results presented are from variety trials and production studies established in fall 2008 and completed in summer 2009.

In the southern High Plains (CO, NM, TX), field trials are focused on establishment, winter survival, and productivity. Detailed microclimate observations at the NM sites will be used to model evapotranspiration (ET) and water savings. Irrigation protocols will be implemented to gauge water use efficiency and optimum irrigation of winter canola. At Walsh, CO, the correlation between soil moisture and winter survival of winter canola is being studied. At Rocky Ford, CO researchers are looking at full versus limited irrigation and the effect of planting date and seed treatment on yield potential. At TX High Plains sights, an ideal target planting date will be identified with plantings 14 and 28 days later using two cultivars. High Plains sites also initiated a comparison of direct cutting, with and without diquat or sodium chlorate, versus swathing for the ability to reduce shattering and yield losses. High Plains sites are mimicking grazing to measure forage yield and grain yield using multiple clipping dates. Entomology studies determine the effect and duration of the seed insecticide treatment effects, geographical variation of insect pests, and susceptibility of canola growth stages to insect feeding. Approaches for developing insect thresholds and possible strategies for treatment will be developed for future testing beyond this proposed project work.

According to TAMU-Lubbock, established canola looks adequate but is not actively

growing. This is somewhat uncommon for mid-February. The southern High Plains had the sixth coldest December on record in 2009 and January 2010 was closer to average. Because of delays with fall harvest, trials near Plainview were planted about September 26, which is late and likely has delayed growth. October 3 plantings the two previous years have suffered mildly in one year and severely in the other. Winter injury could be a major factor. Canola forage plots did not have enough growth in early January to harvest.

The Great Plains Canola Germplasm Evaluation System, established in 1994, consists of a three-tiered performance trial system that tests experimental and released cultivars and hybrids developed by the program and from other public and private entities. The first trial is the Early Generation Screening Nursery (EGSN) and three locations were harvested in 2009 (**Table 4**). To improve data quality, a plot swather was used at nearly all locations managed by the program. This machine improved data quality considerably and will be employed in the future.

The second yield trial is the Great Plains Canola Variety Trial (GPCVT). The GPCVT is planted at 12 locations across the states of CO, IL, KS, MO, NE, OK, and TX. It contains 36 entries each year, including commercial varieties used as checks. The GPCVT provides the first opportunity to gauge adaptability of experimental lines across the broader Great Plains region. **Table 5** shows yield results from the trials that were harvested.

The third trial is the National Winter Canola Variety Trial (NWCVT). Since 1994, the NWCVT has been coordinated by the canola breeding and management program at K-State. The NWCVT includes released cultivars that have not been extensively tested across the United States, advanced experimental lines in the final stages of yield testing, and standard commercial varieties as checks. Results from the trials aid canola growers with variety selection and have assisted various breeding programs in making decisions on the release of experimental lines. This trial has grown from 12 locations in 6 states in 1994-95 to 60 locations in 27 states in 2008-09. Thirty-three of the locations were successfully harvested. This trial included 54 entries from 11 breeding programs from around the world. Results for yield and oil are reported in **Tables 6** and **7**, respectively, for locations in the southern Great Plains. Overall, yields were excellent at locations where moisture was plentiful and there were no adverse effects from the weather (KSCL, OKE, OKE, OKE, OCY – irrigated).

KS4158 is the next targeted variety for release. It is a conventional variety having 1% higher oil content over current varieties grown in the Great Plains. In 2009, it ranked in the top 5 for yield at 3 locations in KS and OK. It has out yielded 'Wichita' by 200 lbs/a across KS and OK locations for two consecutive years.

Grazing winter canola in the late fall and early winter will aid in its adoption in southern Kansas and the High Plains. The effect of simulated grazing on winter survival and grain yield of canola is being examined. **Table 8** shows results from the 2008-2009 forage clipping study at Manhattan, KS and **Table 9** shows results from the 2007-2008 study at Hutchinson, KS. Simulated grazing had a significant effect on winter survival and yield. Experimental variety KS4022 has been identified as a potential dual-purpose forage and grain canola cultivar.

Swathing as a harvest aid versus direct harvesting was compared in a study planted at Hutchinson and Manhattan, KS and Stillwater, OK. Each cultivar was swathed and direct cut at the optimum timing to evaluate the effect of harvest method on final moisture, test weight, grain yield, and oil content. **Tables 10** and **11** show results from Kansas. A significant difference for grain yield was recorded for harvest method at Hutchinson.

Determining the optimum planting date of canola is crucial for successful stand

establishment and yield. **Figures 1** and **2** show canola can be established at multiple planting dates in the fall in southwest Kansas. However, planting winter canola with tillage around September 1 provides the best chance of winter survival and obtaining a successful spring stand.

Impact:

Adding winter canola in rotation with wheat improves the overall sustainability of wheat cropping systems common to the Great Plains. A high-value domestic market exists for healthy cooking oil and high-protein meal. As a result, the potential exists for winter canola to become a major crop in the region. The number of planted acres of winter canola has increased substantially since 2003. Around 55,000 acres were seeded in 2008-2009. Approximately 100,000 acres are planted for the 2009-2010 crop year. Federal crop insurance is available and seed crushing and processing industries have emerged. More adapted cultivars are needed to expand production even further to meet demand. More production research is needed as current data from management studies provides insufficient information for those interested in planting canola. Winter canola is a feasible option today, both agronomically and economically.

Publications:

- Holman, J., M. Stamm, S. Maxwell, G. Miller, C. Godsey, K. Roozeboom, and V. Martin. 2009.Effect of row spacing, tillage, opener, and coulter on winter canola. Rep. Prog. 1014:112-119. Kans. Ag. Exp. St. and Coop. Ext. Serv., Manhattan, KS.
- Holman, J., M. Stamm, S. Maxwell, G. Miller, C. Godsey, K. Roozeboom, and V. Martin. 2009. Effect of planting date on winter canola. Rep. Prog. 1014:120-126. Kans. Ag. Exp. St. and Coop. Ext. Serv., Manhattan, KS.
- Stamm, M. 2009. Kansas performance tests with winter wheat varieties excerpts from the national winter canola variety trial. Rep. Prog. 1018:14-21. Kans. Ag. Exp. St. and Coop. Ext. Serv., Manhattan, KS.
- Stamm, M., C. La Barge, A. Berrada, H. Bhardwaj, B. Caldbeck, S. Casteel, E. Cebert, G. Cramer, D. Day, N. Dunford, J. Enjalbert, J. Gassett, M. Gilmer, J. Hagan, W. Heer, S. Hulbert, J. Johnson, J. Kelly, J. Krall, R. Kratochvil, J. Lamle, E. Lentz, C. Mansfield, V. Martin, J. Nachtman, S. O'Daniel, M. O'Neil, C. Owen, C. Pearson, C. Rife, R. Sidwell, D. Spradlin, D. Starner, K. Tungate, and G. Ware. 2010. 2009 National Winter Canola Variety Trial. Rep. Prog. 1026. Kans. Ag. Exp. St. and Coop. Ext. Ser., Manhattan, KS. 58 pp.
- Stamm, M., C. La Barge, R. Bacon, A. Berrada, H. Bhardwaj, B. Caldbeck, E. Cebert, E. Christmas, M. Claassen, D. Day, J. Enjalbert, J. Gassett, N. George, C. Godsey, J. Hagan, J. Holman, S. Hulbert, F. Iutzi, B. Johnson, J. Johnson, J. Kelly, R. Kochenower, J. Lamle, K. Larson, E. Lentz, C. Mansfield, J. Massey, J. Moore, J. Nachtman, M. O'Neill, E. Nielsen, C. Owen, A. Pavlista, C. Pearson, W. Phippen, C. Rife, C. Sams, C. Schmidt, M. Schmidt, J. Sij, L. Strang, R. Thacker, K. Tungate, J. Valliant, G. Ware, and D. West. 2009. 2008
 National Winter Canola Variety Trial. Rep. Prog. 1009. Kans. Ag. Exp. St. and Coop. Ext. Ser., Manhattan, KS. 82 pp.
- Boyles, M., T. Peeper, M. Stamm, J. Criswell, F. Epplin, K. Giles, C. Godsey, W. Heer, G. Hergert, J. Holman, D. Jardine, C. Jones, V. Martin, D. Peterson, K. Roozeboom, T. Royer, H. Sanders, P. Sloderbeck, and C. Thompson. 2009. Great Plains Canola Production Handbook. Kans. Ag. Exp. St. and Coop. Ext. Ser., Manhattan, KS. MF-2734.

Table 1. Distributions of the Great Plain	ns Canola Re	search Prog	ram Funds					
Total Funds: \$210,000				Sta	ate ¹			
	Colorado	Kansas	Missouri	Nebraska	New Mexico	Oklahoma	Texas	
Projects	CSU^2	K-State	UM	UNL	NMSU ²	OSU	TAMU - Vernon	TAMU – Lubbock ²
Canola Variety Development		Х		Х		Х		Х
National Winter Canola Variety Trial	X^3	Х	Х		Х	Х	Х	Х
Great Plains Canola Variety Trial	X	Х	Х	Х		Х	Х	Х
Early Generation Screening Nursery		Х		X		X		
Canola Establishment	X	Х			Х	X		X
Irrigation	X	Х		X	Х		Х	Х
Cultivar Development in No-till		Х				Х		
Planting Date		Х			Х			Х
Canola Harvest Management		Х				Х		Х
Canola Forage Clipping Study		Х						Х
Insect Assessment					X			Х
State Totals	\$30,500	\$90,000	\$5,000	\$7,500	\$30,500	\$11,000	\$5,000	\$30,500

1. State Project Participants: CSU – Jerry J. Johnson, Mike Bartolo, Perry Cabot, Kevin Larson, Abdel Berrada, Calvin Pearson, James Valliant; KSU – Michael Stamm, John Holman, Victor Martin, Kraig Roozeboom; UM – Bill Wiebold; UNL – Dipak Santra; NMSU – Sangu Angadi; OSU – Rick Kochenower, Chad Godsey; TAMU (Vernon) – John Sij; TAMU (Lubbock) – Calvin Trostle, Christian Nansen, Dick Auld

2. Researchers at these southern High Plains locations were added to the broader Great Plains Canola Research Program in 2009. The program's \$90,000 raised the total award to \$210,000 for FY09.

3. X – Indicates participation in project. The Great Plains region has allowed the individual institution to determine how to divide their funding between projects and therefore amounts for individual projects within a state are not listed. However, planting of the National Winter Canola Variety Trial or the breeding program's intermediate trials is mandatory.

Table 2. Winter Canola Production Research and	Extension Activities	5	
Event	<i>Location</i>	Date	<u>Attendees</u>
Custar County Canola Tour	Weatherford, OK	4/15/2009	25
Woods County Canola Tour	Dacoma, OK	4/16/2009	40
Sedgwick County Wheat and Canola Tour	Clearwater, KS	5/20/2009	60
Harvey County Spring Field Day	Hesston, KS	5/21/2009	120
Central Kansas Canola Tour	Hutchinson, KS	5/23/2009	30
5 th Annual Winter Canola Conference	Enid, OK	7/21/2009	300
Pre-plant Wheat and Canola Meeting	Wichita, KS	8/11/2009	60
Kansas Legislative Aids Meeting	Manhattan, KS	8/24/2009	30
South Plains Oilseeds Workshop	Lubbock, TX	1/13/2010	
ES NM & W TX High Plains Oilseeds Workshop	Clovis, NM	2/5/2010	

Table 3. Canola external advisory committee for the Great Plains Canola Research Program and canola breeding and management program.

and canona breeding and		
<u>Name</u>	<u>Affiliation</u>	<u>City/State</u>
John Fenderson	Monsanto, Technology Development Rep	Kiowa, KS
John Haas	Canola producer	Larned, KS
Gene McVey	President, Johnston's Seed Company	Enid, OK
Van Schuermann	Johnston's Grain Company	Enid, OK
Jeff Scott	President, Great Plains Canola Association	Pond Creek, OK
Bob Schrock	Canola producer	Kiowa, KS
Siva Tirumalaraju	Monsanto, Canola Breeder	Mt. Hope, KS
Clark Woodworth	Canola producer	Sterling, KS
Mark Boyles	OSU OKanola Project Specialist	Stillwater, OK
Tom Royer	OSU IPM Coordinator and Entomologist	Stillwater, OK
William Heer	KSU Agronomist-in-Charge, South	Hutchinson, KS
	Central Experiment Field	
Victor Martin	KSU Alternative Crops and Forages	Hutchinson, KS
	Agronomist	
Thomas Peeper	OSU OKanola Project Leader	Stillwater, OK
David Porter	Co-Chair, Head of the OSU Department of	Stillwater, OK
	Plant and Soil Sciences	
Kraig Roozeboom	KSU Cropping Systems/Crop Production	Manhattan, KS
	Agronomist	
Heath Sanders	OSU Canola Extension Specialist	Enid, OK
Michael Stamm	KSU & OSU Canola Breeder	Manhattan, KS
Gary Cramer	Sedgwick County Crops and Soils Agent	Wichita, KS
Francis Epplin	OSU Agricultural Economist	Stillwater, OK

 Table 4. Yield results for three 2009 Early Generation Screening Nursery locations

 Entry Line
 Hutchinson¹
 Manhattan
 Enid

		KS	KS	OK
			Vield (lb/a)	
1	KS4399	966	1114	1883
2	KS4401	820	1653	2068
3	KS4420	1110	1106	1750
4	KS4421	837	1664	1885
5	KS4422	8/4	1386	1730
7	KS4425	907 805	1420	2001
8	KS4427	842	1061	1820
9	KS4428	1273	1392	1928
10	KS4440	1035	1413	1679
11	KS4441	993	1446	1817
12	KS4442	1107	1530	1893
1/	KS4391	757	1300	169/
15	KS4410	1025	1364	1692
16	KS4429	1142	1411	2145
17	KS4432	1116	1667	1730
18	KS4437	896	1309	1763
19	KS4438	1016	1238	1568
20	KS4439	982	1361	1728
21	KS4455 KS/300	424	1200	1027
23	KS4392	562	1012	1548
24	KS4396	1018	1372	1411
25	KS4402	1010	1374	1728
26	KS4403	966	1340	1266
27	KS4407	665	1428	1504
28	KS4408	591	1116	1763
29	KS4417 KS4430	004	1308	1662
31	KS4452	913	1475	2047
32	KS4460	850	1152	1608
33	KS4462	1146	1232	1288
34	KS4463	680	1297	1433
35	KS4465	730	1288	1805
36	KS4466	879	1289	1805
38 38	KS4400 KS1169	940 843	1335	1038
39	KS4470	1153	1446	1623
40	KS4471	1014	1267	1419
41	KS4472	833	1487	1617
42	KS4473	1088	1752	1672
43	KS4474	929	1256	1498
44 15	KS4475 KS4476	1001	2132 15/2	2140
46	KS4477	1127	1671	1863
47	KS4478	901	1896	1818
48	KS4479	914	1502	1727
49	KS4480	850	1583	1857
50	KS4481	887	1873	1582
51 52	KS4482	1119 076	1556	2088
52 53	KS4484	883	1293	1720
54	KS4485	1102	1481	1513
55	KS4486	1297	1743	1666
56	KS4487	1164	1473	1767
57	KS4488	868	1493	2003
58	KS4489	1447	1918	1904
59 60	NO4490 KS4401	765	1480	1652
61	KS4492	671	1421	1664
62	KS4493	785	1571	1918
63	KS4494	1073	1419	1596
64	KS4495	602	1416	1400
65	KS4496	1273	1127	1936
66	KS4497	1192	1629	2060
69 69	K54498	1066	1541 1006	1770
69	Kiowa	943	1387	2005
70	Sumner	516	951	1653
71	Virginia	1345	1862	2140
72	Wichita	791	1346	2110
	Mean	952	1430	1772
	LSD (0.05)	23 357	∠1 494	348

BOLD - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. 1/ Yield potential reduced by shattering prior to and after swathing.

Line	Hutchinson	Manhattan	Parsons ¹	Columbia ²	Lahoma	Weatherford ³	Chillicothe ⁴
	KS	KS	KS	MO	OK	OK	ТХ
		1.100		Yield (lb/a)	1000	1110	
Kiowa	937	1496	545	897	1368	1110	309
KS3R09	965	1227			1372		
KS3R13	1282	1258			1624		
KS4018	1194	1215	592	873	1072	1159	417
KS4023	1160	1401	589	521	1036	1052	290
KS4031	1114	1596	647	1013	1480	1270	508
KS4033	1471	1446	305	1019	1305	865	345
KS4035	1380	1311	563	780	1129	1052	318
KS4083	1164	1672	614	642	1523	995	408
KS4106			335	441		1027	363
KS4112			422	1008		889	363
KS4124	1247	1536	267	1117	1218	1063	517
KS4127	1106	1329	414	852	1638	842	272
KS4134	1250	1366	639	860	1242	1243	517
KS4138	1009	1644	558	688	1657	966	554
KS4155	1366	1519	619	1083	1328	875	708
KS4191	675	1478	546	865	1254	1082	345
KS4192	1392	1153	451	909	861	1103	245
KS4280	1208	1346	562	504	1456	1360	608
KS4313	1261	2024	546	800	1411	1074	390
KS4323	1116	1187	565	1066	1523	1217	445
KS4395	1195	1452	629	485	1216	930	345
KS4404	1558	1117	442	486	1212	1120	417
KS4409	1118	1072	318	626	1195	756	699
KS4416	1313	1341	591	723	1370	967	526
KS4419	1286	1240	142	659	1501	767	281
KS4424	1300	1459	803	659	1536	1060	617
KS4426	1217	2020	453	601	1559	1078	390
KS4433	1599	1543	393	794	1303	923	563
KS4436	1179	1779	370	619	1503	1113	445
KS4443	1337	1603	188	878	1284	1083	345
KS4459	1326	1397	638	1050	908	950	345
KS4461	1115	887	227	963	1275	1024	463
KSIU182	1236	1217	426	703	1275	1025	327
KSIU331	1042	1503	536	855	1401	1252	318
Sumner	1301	982	362	804	1171	846	272
Virginia	1316	1373	746	482	1258	1190	472
Wichita	1373	1682	473	761	1530	1085	617
Mean	1225	1413	487	780	1333	1039	427
CV	21	25	42	42	20	20	38
LSD (0.05)	NS	NS	336	NS	432	NS	267

Table 5. Yield results for 7 locations of the 2009 Great Plains Canola Variety Trial

one being superior to the other. 1/ A dry March decreased yield potential significantly. 2/ Yield loss to winter survival. 3/ A hard spring freeze reduced yields despite a full recovery. 4/ Drought and aphid infestations reduced yields.

		Clearw	Hutchin	Manhatt			Weatherf				Yellow	Columb	Chillic	
Brand	Name	ater	son	an	Enid	Lahoma	ord	Akron	Akron ¹	Fruita ¹	Jacket ¹	ia	othe ¹	Average
		KS	KS	KS	OK	OK	OK	CO	CO	CO	CO	MO	ТΧ	
							Yi	eld (lb/a)						
Alabama A&M	AAMU-18-07		692	226	1710	1245	459			3553		54	218	1020
Alabama A&M	AAMU-33-07		1082	974	2488	1635	1054			3625		318	608	1473
Arkansas	ARC00004-2		906	717	2571	1577	998			2980		161	300	1276
Arkansas	ARC00005-2		864	974	2592	1655	1148			3101		431	354	1390
Arkansas	ARC00024-2		936	984	2254	1713	862			2607		118	463	1242
Arkansas	ARC2189-2		1148	1017	2551	1584	1256			2768		578	363	1408
Blue Sun	BSX-501	1279	1318	532	2587	1398	1424	827	1703	3000	3493	982	526	1617
Blue Sun	BSX-6131		1312	665	2216	1346	1322	494	1443	2729	3446	633	454	1460
Blue Sun	BSX-6242		938	1249	2427	1670	1171	576	1716	3568	4168	897	590	1725
Blue Sun	BSX-6271		1259	1248	2532	1395	1221	706	1358	3052	3770	604	581	1611
Blue Sun	BSX-6406		1270	1177	2242	1775	1199	781	1641	3050	3683	623	281	1611
Croplan	HyClass107W	2077	782	879	2408	1557	1191	702	1720	3116		147	336	1284
Croplan	HyClass110W	1423	794	149	2153	1576	821			2925		84	363	1108
Croplan	HyClass115W	1253	609	332	1861	1358	1062			3367		354	309	1156
Croplan	HyClass154W		1251	976	2198	1730	1341	641	1602	3242	3707	277	626	1599
DeKalb	CWH095D		1616	1533	2159	2041	1216			4109		796	354	1728
DeKalb	CWH101D		1192	1229	2709	2036	1304			3833		842	309	1682
DeKalb	CWH111		916	449	2109	1116	704	710	1159	3578	2946	132	227	1277
DeKalb	CWH633		1013	550	1954	1522	1149	673	1478	3131	3586	497	381	1449
DeKalb	DKW41-10	1170	580	697	1835	1360	758	229	812	2975	2710	607	209	1161
DeKalb	DKW45-10	1051	718	498	2179	1308	1082	428	1067	3567	3725	576	281	1403
DeKalb	DKW46-15	1175	1050	557	2126	1810	1156	417	1209	3214	3357	653	290	1440
DeKalb	DKW40-10	1625	782	688	1033	1701	10/18	552	1063	33/12	3/01	175	200	1307
DI Seeds	Baldur	1023	1304	1089	2697	10/2	1310	628	1837	32/10	3818	1//	563	1607
DL Seeds	Dimension	1//8	607	070	2651	2066	017	600	1306	3358	3068	78	400	1555
DL Seeds	Flash	2208	1366	1045	2517	1080	1203	234	468	3701	3680	102	717	1556
DL Seeds	Hornet	2230	1137	1363	2085	1656	1366	1003	1854	3003	4079	130	526	1773
DL Seeds	Kronos		1260	Q11	2000	2134	1350	1035	1034	3355	3/71	261	517	1728
DL Seeds	NP70604		053	761	2320	1830	1000	003	1832	1211	356/	/30	/181	1673
DL Seeds	NFZ0004 Sofran		900	1111	2320	1059	1694	993	2006	4ZII 27/1	4496	439	401 000	1073
DL Seeds	Salian		1200	1/44	1007	1905	1059	921 740	1652	J/41 4257	4400	20	717	1909
DL Seeds	Vichy		100	600	2447	1919	1200	040	10.02	4237	2060	15	/ 1/	1025
L Seeus	Kiowa		1120	000	2447	1470	1066	047 1104	1940	2006	2121	254	245	1071
K-State	Sumpor	1441	046	470	2465	1200	000	711	1701	2000	2252	204 697	345 445	1400
K-State	Michito	1441	940 1000	479	2403	1607	1050	000	1445	2031	2467	560	440	1450
	Ke2074	1012	1025	970 1105	2541	1726	1100	020	1445	2011	3407	726	400	1000
K-State/OSU	KS3074		1035	400	2000	1730	1197			3030		120	490	1400
K-State/OSU	K03077		1190	490	2440	1595	4000						200	1432
K-State/OSU	K00102		1000	12/0	2010	1041	1200		4740	2014		030	509	1555
K-State/OSU	KS3204		1317	1103	2490	1//4	1223	028	1743	3130	3/32	002	572	1672
K-State/OSU	K54022		1097	11/6	2256	1434	1058	948	1511	2968	3647	624	481	1564
K-State/USU	K54085		12/8	1207	2394	1619	976	715	1/9/	3064	3520	550	608	1612
K-State/OSU	KS4158		1479	1353	2698	1672	1275	732	1778	3232	3632	611	535	1/2/
Momont	Hybrigold	1193	968	423	2229	1389	863			3759		49	436	1264
Momont	Hybrilux		739	509	2342	2004	1098			3698		20	535	1368
Momont	Hybristar		869	666	1792	1812	1128			3184		139	517	1263
Momont	Hyprisurf	1871	///	680	1835	2067	996			4043		60	535	1374
Momont	Kadore		1465	923	2503	1402	1482	779	1698	3490		415	708	1486
Pioneer Hi-Bred	45D03		1396	974	2759	1963	1243			3581		147	590	1582
Pioneer Hi-Bred	46W14		1080	712	2498	1940	1064			3828		13	672	1476
Pioneer Hi-Bred	46W99		875	565	2248	1830	1361			3277		200	463	1353
TCI	Hearty						1107			2987			263	1452
TCI	Rossini						1298			3764		36	717	1454
Virginia State	Virginia	996	876	718	2470	1651	1078	644	1515	3405	3228	607	554	1522
	Mean	1421	1084	861	2330	1679	1132	699	1552	3336	3640	411	467	1563
	CV	29	25	37	10	12	17	27	15	12	14	55	28	
	LSD (0.05)	699	433	519	395	327	306	176	215	642	840	366	212	

BOLD - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. For location agronomic information, please see the 2009 National Winter Canola Variety Trial, SRP 1026, http://www.ksre.ksu.edu/library/crpsl2/srp1026.pdf 1/ Site was irrigated.

Table 7. Oil results for 9 Great Plains locations of the 2009 National Winter Canola Variety Trial

		Clearw	Hutchins	Manhatt			Weatherf			Yellow	
Brand	Name	ater	on	an	Enid	Lahoma	ord	Akron ¹	Fruita ¹	Jacket ¹	Average
		KS	KS	KS	OK	OK	OK	CO	CO	CO	
						OIL (%)					
Alabama A&M	AAMU-18-07		42.9	38.2	37.5	39.5	33.4		45.2		39.5
Alabama A&M	AAMU-33-07		41.9	36.4	37.4	40.6	38.9		46.6		40.3
Arkansas	ARC00004-2		42.9	32.5	36.6	39.1	40.0		44.9		39.4
Arkansas	ARC00005-2		41.7	35.2	37.3	40.3	40.2		44.6		39.9
Arkansas	ARC00024-2		42.1	35.7	34.6	39.8	40.6		45.4		39.7
Arkansas	ARC2189-2		41.6	38.4	38.2	40.2	41.1		46.9		41.1
Blue Sun	BSX-501		42.4	33.6	36.8	40.4	39.8	35.1	44.8	40.9	39.2
Blue Sun	BSX-6131		41.4	31.2	36.7	39.9	39.9	34.6	48.0	39.2	38.9
Blue Sun	BSX-6242		40.9	37.4	37.4	41.0	40.2	36.4	46.5	39.7	39.9
Blue Sun	BSX-6271		41.8	37.9	38.4	41.1	40.7	37.3	45.3	41.1	40.5
Blue Sun	BSX-6406		40.7	36.9	38.4	39.9	41.0	36.9	44.8	42.2	40.1
Croplan	HyClass107W	38.9	40.8	38.2	37.7	41.1	40.0	36.9	45.4	40.5	39.9
Croplan	HyClass110W	38.7	40.5	34.7	36.7	40.6	39.4		46.6		39.6
Croplan	HyClass115W	35.5	42.7	36.7	37.5	41.5	40.7		45.5		40.0
Croplan	HyClass154W		40.3	32.6	36.6	39.0	41.4	34.7	45.7		38.6
DeKalb	CWH095D		41.3	37.0	36.5	41.3	41.0		44.6		40.3
DeKalb	CWH101D		41.6	36.3	36.4	42.1	41.4		45.1		40.5
DeKalb	CWH111		42.8	30.6	37.7	36.6	38.3	33.1	44.3	40.8	38.0
DeKalb	CWH633		41.0	36.1	37.6	40.6	40.4	35.3	45.3	40.7	39.6
DeKalb	DKW41-10	34.7	41.6	31.6	34.7	39.4	37.1	32.2	44.7	39.0	37.2
DeKalb	DKW45-10	34.5	42.4	38.5	37.8	40.7	40.8	33.3	46.8	38.5	39.2
DeKalb	DKW46-15	38.4	42.0	30.3	38.7	41.8	42.1	35.8	44 4	40.8	39.4
DeKalb	DKW47-15	36.5	42.3	37.6	36.8	41.0	40.7	33.7	46.3	40.0	39.6
DI Seede	Baldur	36.0	42.0	35.4	37.6	40.7	40.7 /1 7	35.7	46.0	40.5	30.6
DL Seeds	Dimension	35.0	42.5	38.1	30.0	42.0	40.5	34.4	46.8	40.0	40.5
DL Seeds	Flach	38.6	42.5	35.2	30.0	42.0	40.5	36 /	40.0	44.2 /1 2	40.3
DL Seeds	Hornet	50.0	40.0 12 3	38.3	38.3	42.0	42.5	36.4	45.6	41.0	40.7
DL Seeds	Kronos		42.5	32.5	36.0	41.1	42.5	35.5	45.0 15.0	41.0	30.5
DL Seeds	ND70604		42.1	36.2	29.5	40.7	40.7	39.5	45.5	41.5	40.7
DL Seeds	Sofron		42.4	36.4	39.0	42.4	40.9	37.6	43.4	40.5	40.7
DL Seeds	Saliali		41.7	26.1	30.0	41.5	42.0	24.7	47.2	40.0	40.7
DL Seeds	Vieby		42.0	25.7	27.0	42.2	40.1	34.7 26 F	45.4	41.0	39.9
DL Seeus K Stoto	Sumpor	25.0	41.0	33.7 27.4	37.4	40.8	 27 E	30.0	46.2	41.5	30.9
K-State	Summer	35.0	41.7	37.4	37.4	40.8	37.5	30.3	40.5	41.0	39.3
K-State	Kiowo	34.4	40.0	35.3	37.0	40.3	40.Z	34.3	40.0	40.0	30.7
K-State (OCU	KIOWA		42.1	35.7	37.0	40.6	39.9	32.9	44.0	41.1	39.3
K-State/OSU	K53074		42.1	37.3	37.5	41.5	40.3		46.1		40.8
K-State/OSU	KS3077		40.9	30.1	37.4	40.9					37.3
K-State/OSU	KS3132		42.1	35.4	38.1	40.2	39.6		44.7		40.0
K-State/OSU	K53254		41.1	30.0	37.8	41.0	40.4	36.0	45.4	40.6	39.9
K-State/OSU	KS4022		42.0	36.0	37.1	40.9	35.5	32.8	44.6	41.5	38.8
K-State/OSU	KS4085		41.6	37.5	38.7	40.9	39.8	36.3	46.1	40.7	40.2
K-State/OSU	KS4158		41.6	39.6	38.7	41.3	41.5	37.0	45.9	43.5	41.1
Momont	Hybrigold	35.9	42.6	30.1	37.5	39.7	41.3		45.8		39.0
Momont	Hybrilux		42.1	33.8	38.4	41.8	40.0		46.4		40.4
Momont	Hybristar		40.5	35.7	37.5	41.7	40.9		46.8		40.5
Momont	Hybrisurf	36.3	41.1	34.9	38.4	43.6	42.1		46.2		40.4
Momont	Kadore		42.7	33.5	35.3	39.0	40.2		47.4		39.7
Pioneer Hi-Bred	45D03		40.5	34.5	38.7	40.4	43.1		45.0		40.4
Pioneer Hi-Bred	46W14		41.8	33.5	39.0	42.4	43.0		46.8		41.1
Pioneer Hi-Bred	46W99		42.1	36.7	39.0	41.6	42.0		45.6		41.2
TCI	Hearty						40.9		45.8		43.4
TCI	Rossini						40.8		45.4		43.1
Virginia State	Virginia	34.6	42.2	35.5	36.3	40.1	39.5	33.4	44.9	40.6	38.5
Mean		36.3	41.8	35.4	37.5	40.8	40.4	35.3	45.7	40.9	39.3
CV		10.5	2.6	8.2	2.0	2.3	3.8	4.1	2.7	3.0	
LSD (0.05)		NS	NS	NS	1.2	1.9	2.5	2.4	NS	NS	

BOLD - Superior LSD Group - Unless two entries differ by more than the LSD, little confidence can be placed in one being superior to the other. For location agronomic information, please see the 2009 National Winter Canola Variety Trial, SRP 1026, http://www.ksre.ksu.edu/library/crpsl2/srp1026.pdf. 1/ Site was irrigated.

Table 8. Results for the 2008-2009 forage clipping study at Manhattan, KS

		Winter	Forage								
	Grain Yield	Survival	Weight	Protein	¹ ADF	NDF	NEL	NEG	NEM	TDN	RFV
	(lbs/a)	(%)	(lbs/a)	(%)	(%)	(%)	(Mcal/lb)	(Mcal/lb)	(Mcal/lb)	(%)	
KS4022	1572.1 a	98.4 a	3823.7	26.5 a	19.0 b	21.3 b	0.796 a	0.549 a	0.876 a	76.5 a	332.1 a
KS9135	875.2 b	67.8 c	4492.2	25.8 a	20.0 b	22.2 b	0.780 a	0.534 a	0.861 a	75.3 a	315.3 a
Sitro	873.0 b	62.8 c	5078.2	23.0 b	20.7 b	22.7 b	0.773 a	0.521 a	0.850 a	74.4 a	305.8 a
Wichita	1443.8 a	83.7 b	3999.5	25.6 a	23.2 a	25.6 a	0.739 b	0.484 b	0.811 b	71.6 b	263.8 b
LSD (0.05) ²	330.3	11.9	NS	2.5	2.2	1.8	0.029	0.035	0.035	2.6	29.2
4-Nov-08	1027.0 b	68.5 b	3746.9 b	24.9	22.9 a	25.3 a	0.744 b	0.489 b	0.816 b	71.9 b	265.1 b
25-Nov-08	1001.3 b	73.4 b	4949.9 a	25.6	18.6 b	20.5 b	0.799 a	0.555 a	0.883 a	76.9 a	343.3 a
None	1544.9 a	92.6 a									
LSD (0.05) ²	286.1	10.3	715.3	NS	1.6	1.3	0.021	0.025	0.025	1.9	20.6

1/ ADF=Acid Detergent Fiber, NDF=Neutral Detergent Fiber, NEL=Net Entery Lactation, NEG=Net Energy Gain, NEM=Net Energy Maintenance, TDN=Total Digestible Nutrients, RFV=Relative Feed Value

2/ Means followed by the same letter are not significantly different.

Table 9.	Results for the	2007-2008	forage	clipping	study at	Hutchinson,	KS
				Cru	do		

				Crude					
Variety	Moisture	Dry Yield	Wet Yield	Protein	ADF ¹	NDF	TDN	Nitrates	RFV
	(%)	(lb/a)	(lb/a)	(%)	(%)	(%)	(%)	(ppm)	
KS4022	84	1640	10,630	27.1	13.2	18.4	83.3	4770	401
KS9135	86	1700	12,250	28.5	10.4	16.6	86.6	6165	457
Sitro	86	1680	11,950	27.0	11.0	16.6	85.8	7838	542
Wichita	86	1560	10,820	27.3	9.9	15.4	87.1	4665	490
Mean	86	1645	11,410	27.5	11.1	16.8	85.7	5860	473

1/ADF=Acid Detergent Fiber, NDF=Neutral Detergent Fiber, TDN=Total Digestible Nutrients, RFV=Relative Feed Value

Table 10. Re	sults from the	e 2008-2009 sv	vathing study at	Manhattan, KS	6		
	Fall	Plant	Grain	Test			
Treatment	Stand	Height	Moisture	Weight	Yield	Protein	Oil
Hornet			7.1	46.8 a	2283.2 a	25.3 b	38.8 a
Sitro			7.0	46.9 ab	2092.7 b	25.5 b	37.8 b
Virginia			7.5	45.6 bc	1793.2 c	27.0 a	37.5 b
Wichita			6.9	45.0 c	1938.5 bc	27.1 a	36.8 c
LSD (0.05)			NS	1.3	159.1	0.5	0.4
Direct			7.6 a	46.1	2039.2	26.3	37.7
Swath			6.7 b	46.1	2014.6	26.1	37.7
LSD (0.05)			0.4	NS	NS	NS	NS

Table 11. Results from the 2008-2009 swathing study at Hutchinson, KS

	Fall	Plant	Grain	Test			
Treatment	Stand	Height	Moisture	Weight	Yield	Protein	Oil
Hornet	6.6 b	41.0 a	6.5 b	44.0	1422.3 a	22.5 b	40.7 a
Sitro	7.7 a	38.3 b	6.2 b	45.9	988.7 b	23.0 b	39.0 b
Virginia	7.6 a	39.3 b	7.7 a	45.9	1442.3 a	25.3 a	38.6 b
Wichita	6.6 b	41.3 a	6.1 b	46.0	1054.6 b	25.0 a	39.4 b
LSD (0.05)	0.4	1.1	0.6	NS	280.0	0.8	1.1
Direct	7.1	39.8	7.0 a	47.4 a	1368.8 a	24.1	39.7
Swath	7.1	40.1	6.3 b	43.5 b	1085.1 b	23.7	39.2
LSD (0.05)	NS	NS	0.4	2.1	198.0	NS	NS

Figure 1. Winter canola fall stand establishment at five different planting dates in tillage and no-tillage, Garden City, 2009. Means followed by the same letter are not significantly different at $P \le 0.05$.

Figure 2. Winter canola winter survival at five different planting dates in tillage and no-tillage, Garden City, 2009. Means followed by the same letter are not significantly different at $P \le 0.05$