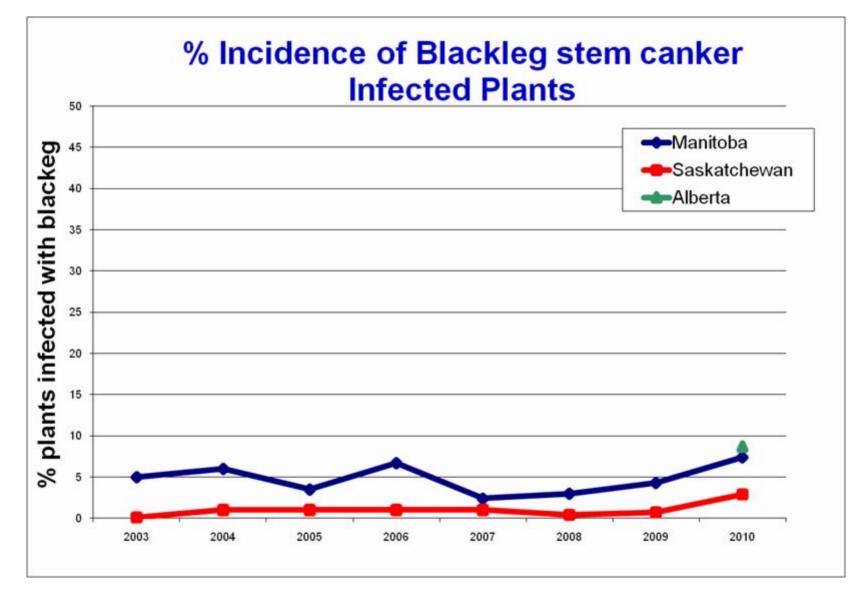
Blackleg of Canola – New Advances in Control and Resistance

Dilantha Fernando

Department of Plant Science University of Manitoba

Canola Research Conference, Long Beach, CA Nov3, 2010

Symptoms of Blackleg



Lear Lesions and discoloration

Stem Lesions

Canadian Situation

Courtesy Clint Jurke and Faye Dokken-Bouchard

Two types of resistance to L. maculans

R gene-mediated resistance (complete resistance)

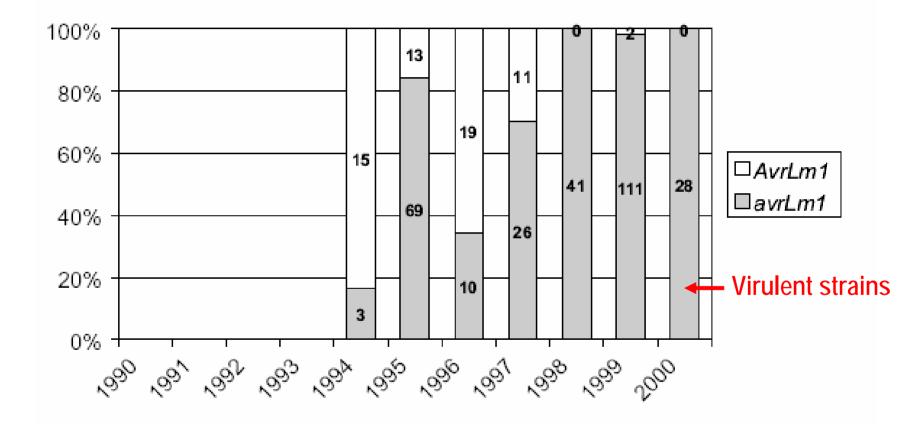
Quantitative resistance (partial resistance)

susceptible

resistant

How should resistance be deployed?

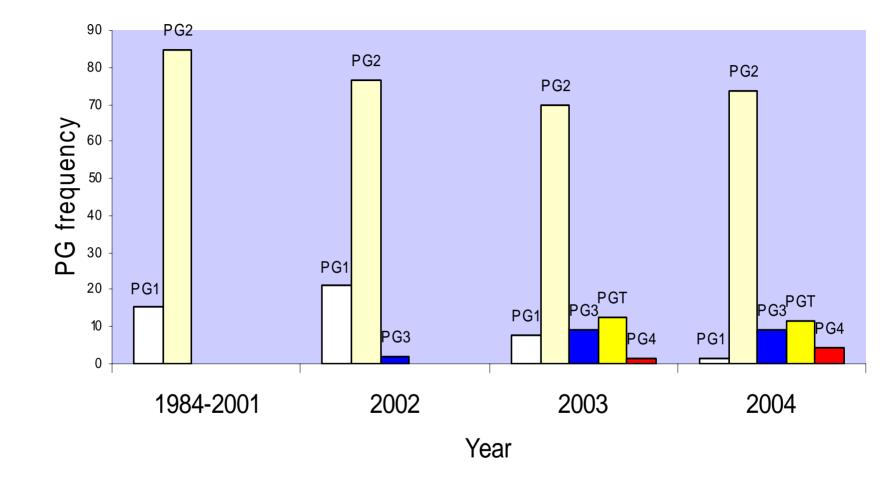
 Resistance can fail if it is not applied correctly, as has happend in Australia and France.



Situation in France

- In France, the large-scale use of single *Rlm1* gene for ten years (1990 to 2000) shifted the population of isolates from *Avrlm1* to others (Rouxel et al., 2003).
- Therefore the efficiency of resistance of the commercially successful cultivars harboring *Rlm1* decreased consistently between 1995 and 2003 in France. (Rouxel et. al. 2003)

Frequency of isolates harboring *AvrLm1* or *avrLm1* from Cultivars with the major resistance gene *Rlm1*


Rouxel et. al. 2003

Situation in Australia

- The Surpass 400 (*LepR3* gene resistance) derived cultivars became susceptible to blackleg within 2 years after being released 'Boom and Bust'!
- Cause due to large-scale use of single gene resistance (2001 to 2003) – loss \$ 5 – 10 million / year
- Dominant single gene resistance being easily overcome by pathogen population shifts (Li et al, 2003).

Situation in Western Canada in early 2000's

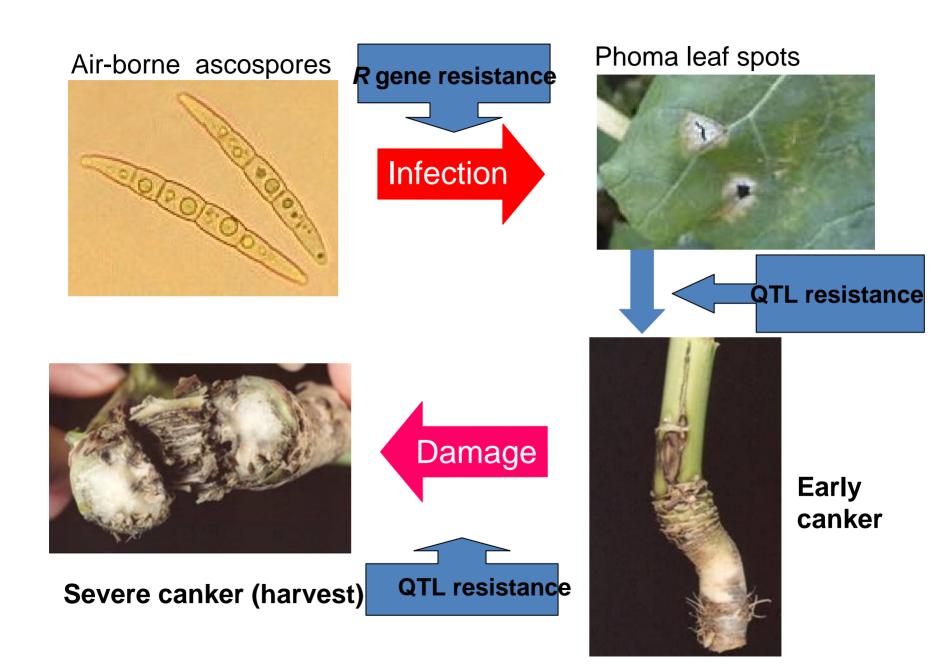
Chen and Fernando, 2006 Can J of Plant Pathology

Identification of 16 races among 87 isolates of *L. maculans* from

western Canada collected between 1997-2005 – R. Kutcher et.al

Race designation ¹	Number of isolates of each race	Frequency (%)	Number of avirulence alleles
Av1-2-3-4-5-(6)-7-(8)-9-10- (LepR3) ²	1	1.2	8
Av1-2-4-5-(6)-7-(8)-9-10- (LepR3)	1	1.2	7
Av1-2-3-6-(8)-9-10-(LepR3)	1	1.2	6
Av1-2-4-6-7-(8)-10-(LepR3)	1	1.2	6
Av1-4-5-6-7-(8)-10-(LepR3)	1	1.2	6
Av2-3-6-(8)-9-10-LepR3	7	8.1	6
Av2-4-6-7-(8)-10-LepR3	13	14.9	6
Av1-2-6-7-(8)-10-(LepR3)	1	1.2	5
Av1-2-6-(8)-9-10-(LepR3)	20	23.0	5
Av1-4-6-7-(8)-10-(LepR3)	1	1.2	5
Av2-4-6-7-(8)-10	1	1.2	5
Av2-6-7-(8)-10-LepR3	3	3.5	5
Av2-6-(8)-9-10-LepR3	19	21.8	5
Av4-6-7-(8)-10-LepR3	1	1.2	5
Av1-2-6-(8)-10-(LepR3)	13	14.9	4
Av2-6-(8)-10-LepR3	3	3.5	4

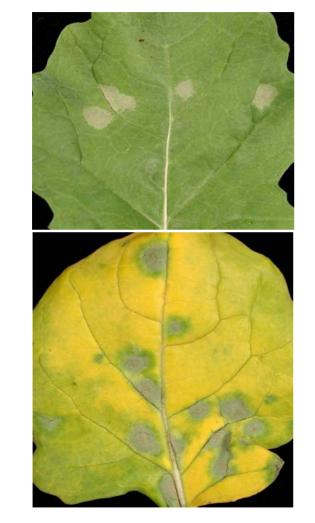
The success in Breeding for disease resistance - the future?


Courtesy Faye Dokken-Bouchard

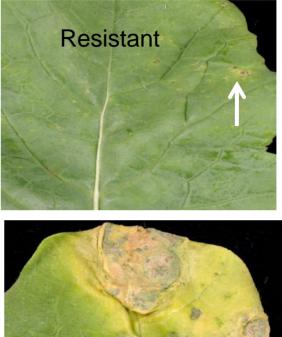
Strategy for stable resistance deployment

• Therefore resistance should be deployed as part of a larger strategy to control this disease.

 Stewardship of blackleg resistance and agronomic practices designed to control blackleg should be recommended together.


Major gene mediated resistance

- Race specific, high risk of overcoming resistance
- Effective only if corresponding *Avr* allele is predominant in pathogen population
- Information on pathogen races is essential
- Many factors (e.g. host cultivar, pathogen fitness cost, temperature) affect race composition of populations



UNIVERSITY of Manitoba

Temperature affects *R* **gene resistance**

Darmor

DarmorMX (RIm6)

Huang et al., 2006, New Phytologist, 170, 129-141

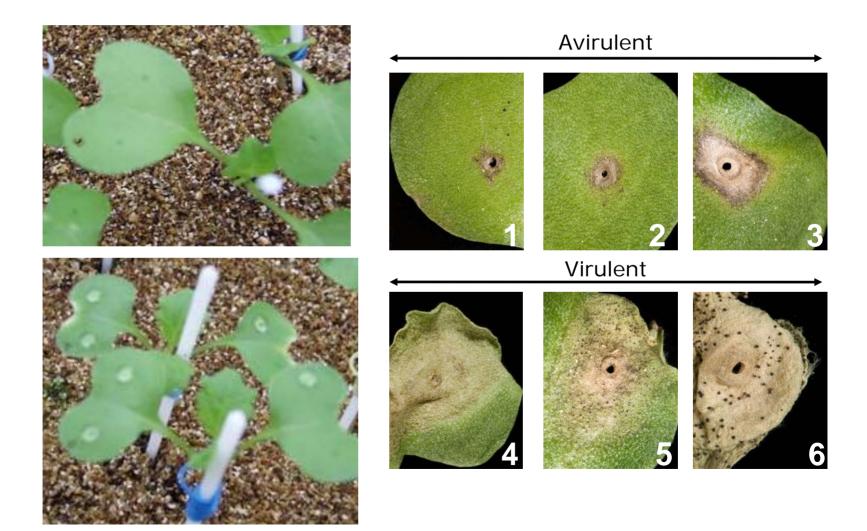
15°C

25°C

Fitness cost of virulence can be used as indicator of durability of the corresponding *R* gene

- Near isogenic isolates at AvrLm1 or AvrLm4 loci
- Host without the corresponding *R* gene (no selection pressure)

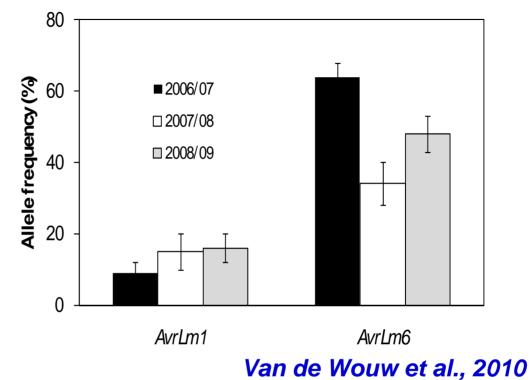
Fitness cost of virulence & potential durability of *R* gene resistance


Fitness cost of virulence at <i>L. maculans</i> locus	Avr gene in L .maculans population	Deploy <i>Brassica</i> <i>napus R</i> gene	<i>L. maculans</i> evolves to virulence	Remove <i>Brassica</i> <i>napus R</i> gene	Consequence for <i>L. maculans</i>	Consequence for <i>Brassica</i> <i>napus</i>		
	AvrLm4	RIm4	Point mutation avrLm4	No <i>Rlm4</i>	Large fitness cost of virulence Rapid selection for <i>AvrLm4</i>	Can redeploy <i>Rlm4</i>		
	AvrLm1	RIm1	Deletion of gene avrLm1	No <i>Rlm1</i>	Smaller fitness cost of virulence Less rapid selection for AvrLm1	May be able to redeploy <i>Rlm1</i>		
	AvrLm2 AvrLm3	Rlm2 Rlm3	? ↓ avrLm2 avrLm3	No <i>Rlm</i> 2 No <i>Rlm</i> 3	No fitness cost of virulence No selection for AvrLm2, AvrLm3	Cannot redeploy <i>Rlm2, Rlm3</i>		
Time (years)								

Monitoring pathogen population

R gene is effective only if corresponding *Avr* allele is predominant in pathogen population, so it is needed to monitor pathogen population

- Collection of isolates from leaf spots or stem cankers
- Collection of ascospores from air samplers
- Determination of pathogen race structure using pathogenicity test or specific PCR primers


Detect Avr allele by inoculation (Pathogenicity Test)

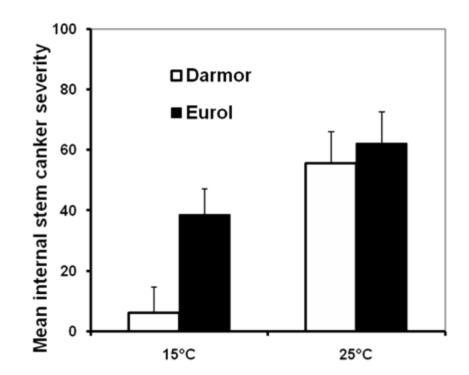
Air sampling to determine alleles

Spore sampler surrounded by diseased OSR stem debris

Advantages

- Samples larger population
- Quicker, cheaper

- UNIVERSITY of Manitoba
- Less laborious than cotyledon assays


Quantitative resistance

- Quantitative resistance is non race specific
- Quantitative resistance is durable
- Difficult to screen for at seedling stage
- Screening for quantitative resistance currently relies on field assessment at harvest
- May operate during long period of symptomless growth after initial leaf

UNIVERSITY of Manitoba

Temperature affects quantitative resistance

Darmor (with quantitative resistance)

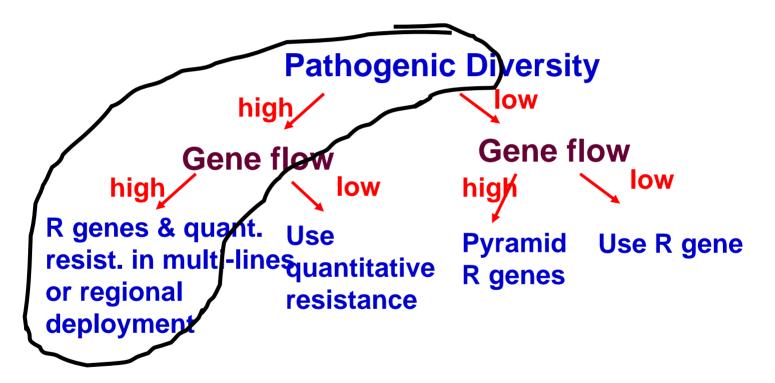
Eurol (without quantitative resistance)

Huang et al., 2009, Plant Pathology

Management of Blackleg of Canola

Cultural control:

Crop rotation for at least 3 years. Tillage – conventional tillage helps reduce inoculum Weeds and volunteer canola removed. Pathogen-free seed.


Genetic resistance:

Resistant cultivars — the most important and sustainable means of blackleg control in Canada for the past three decades.

Keeping Resistance to Blackleg Alive!

• How should resistance be deployed?

McDonald BA. and Linde C. Euphytica 124 (2): 163-180, 2002

Acknowledgements

- Natural and Science and Engineering Research Council
 of Canada
- Agriculture Research Development Initiative, MB
- Canola Council of Canada CARP Program
- Seed Industry
- Yong-Ju Huang Rothamsted Research Station, UK
- Angela Van de Wouw, University of Melbourne
- Randy Kutcher, Agriculture & Agri-Food Canada, Melfort, SK
- Faye Dokken-Bouchard, Saskatchewan Agriculture, Regina, SK
- Clint Jurke, Canola Council of Canada

