

BRASSICA JUNCEA, A PROMISING BIOFUEL CROP FOR THE WEST CENTRAL GREAT PLAINS?

Pat Byrne, Shusong Zheng, Nicolas Enjalbert, Annie Heiliger, and Jerry Johnson

Department of Soil & Crop Sciences

OUTLINE

- Multidisciplinary work group for oilseed biofuels at CSU
- Why Brassica oilseeds for biofuel?
- Field trial results, 2008-2010
- Next steps for *Brassica* improvement

COLLABORATORS, MULTIDISCIPLINARY WORK GROUP

Dan Olsen, Mechanical Engineering

Abdel Berrada, Agronomy

Alan Helm, Weed Science

Shawn Archibeque, Animal Science

Catherine Keske, Economics, Public Policy

COLLABORATORS, CROP GENETICS

Shusong Zheng Post-doc

Jean-Nicolas Enjalbert, PhD student

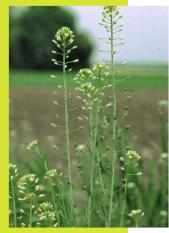
John McKay

Jack Mullen

Pat Byrne

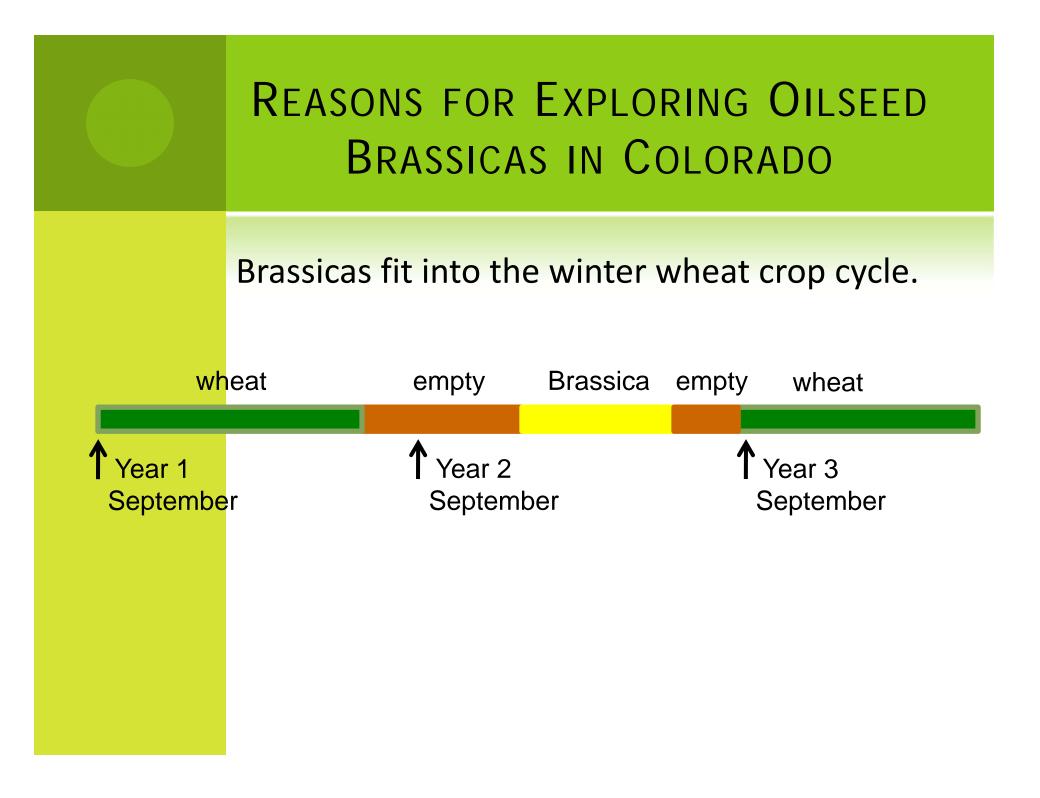
USDA-AFRI BIOFUELS TRAINING GRANT, 2009

Interdisciplinary training for four M.S. students with concentrations in


- Crop genetics
- Crop production
- Engine performance
- Economic analysis

Internships, teaching, Washington DC trip

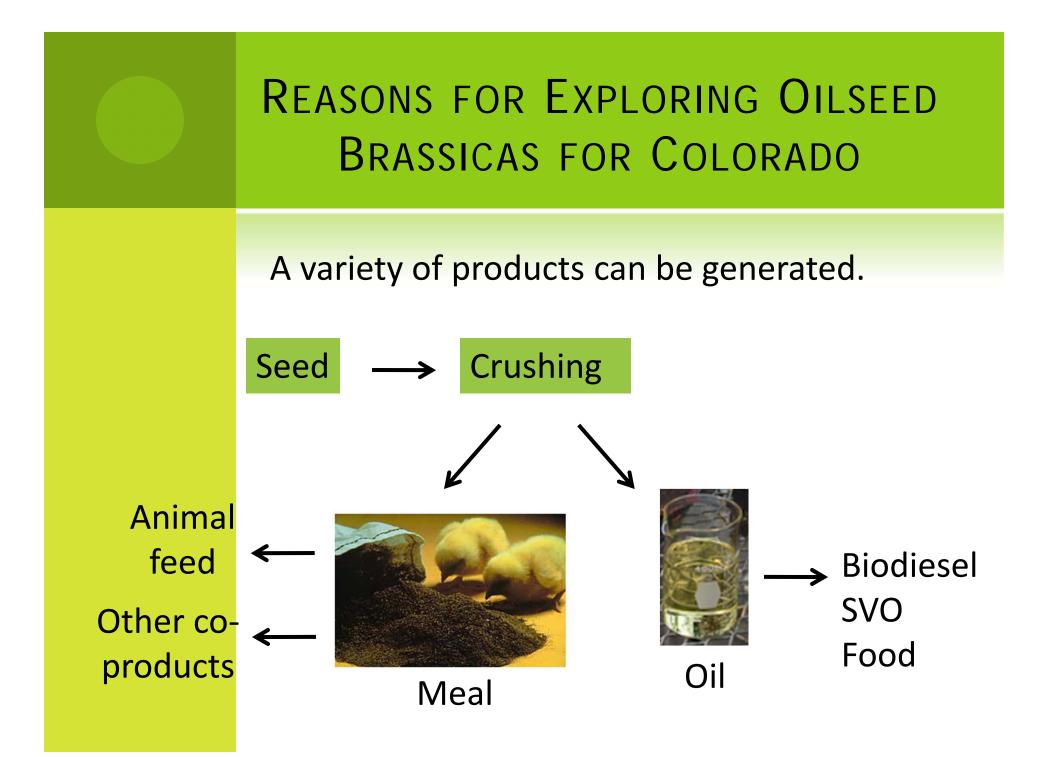
3 CANDIDATE OILSEED SPECIES, ALL RELATIVES OF CANOLA



Brassica juncea, Indian brown mustard

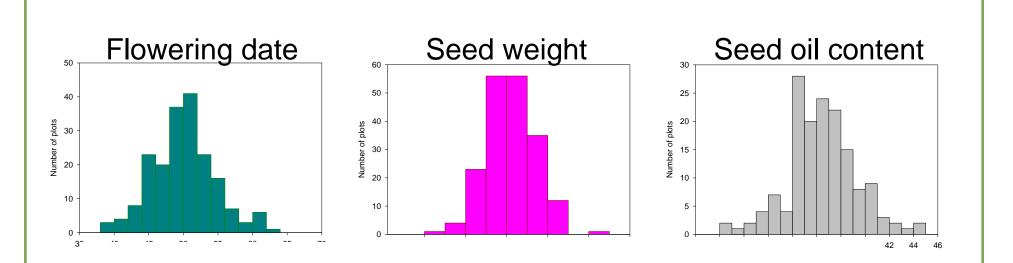
Brassica carinata, Ethiopian mustard

Camelina sativa



REASONS FOR EXPLORING OILSEED BRASSICAS FOR COLORADO

Extraction and conversion technologies exist now – not dependent on technical breakthroughs.


Straight vegetable oil (SVO) will help make farmers more energy independent; produce and use on-farm.

REASONS FOR EXPLORING OILSEED BRASSICAS IN COLORADO

Genetic variation exists among the Brassicas for maturity, heat and drought tolerance, seed yield, oil content, and oil profile.

Frequency distributions for 3 traits in 2008 rainfed trial.

DESIRABLE TRAITS FOR BRASSICA OILSEED CROPS

- Life cycle fits crop rotation
- Uniform maturity, non-shattering
- Insect and disease resistant
- Tolerant to drought, heat, and cold
- Desirable oil profile for food and biofuel ("Double low" = glucosinolate <30 uMol/g and erucic acid<2%)

BRASSICA STUDIES, 2008

 We grew 229 accessions under both irrigated and dryland conditions:
 102 Brassica juncea
 39 Brassica carinata
 88 Camelina sativa.

Plants were evaluated for maturity, agronomic traits, drought tolerance, and oil content.

BRASSICA JUNCEA, Advantages

- Good emergence, except those with seed dormancy
- Appropriate maturity
 Life cycle, dry = 88 days;
 Life cycle, irrigated = 96 days
- Relatively drought tolerant
- Oil content
 Dry mean=36%, max=45%;
 Irrigated mean=37%, max=47%

BRASSICA JUNCEA, DISDVANTAGES

- Flea beetle damage at the seedling and flowering stages
- Aphid damage at the flowering and seed filling stages
- Stem lodging serious in some lines
- High glucosinolate concentrations
 Dry mean=128 uMol/g

Irrigated mean=122 uMol/g

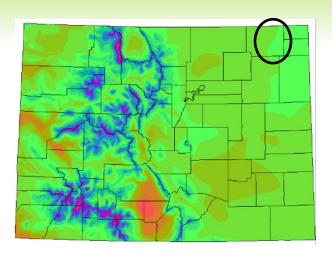
However, low glucosinolate germplasm is available.

TRAIT MEANS FOR THREE SPECIES, 2008 EVALUATION

Irrigated	B. juncea	B. carinata	Camelina	
Days to				
flower	51.2	60.4	50.7	
Plant ht, cm	92.0	100.4	54.8	
Biomass, g	5.4	6.1	2.8	
Seed yield, g	1.3	1.1	0.6	

Rainfed	B. juncea	B. carinata	Camelina
Days to			
flower	49.4	60.3	49.7
Plant ht, cm	65.7	51.7	38.8
Biomass, g	1.9	2.9	2.1
Seed yield, g	0.4	0.3	0.3

QUALITY IMPROVEMENT FOR *B. JUNCEA*


- Crosses made between 38 accessions and CBJ (a 'double low' juncea line from China)
- Crosses made between 60 accessions and DZJ (a 'double low' juncea line from Russia)

- F2's were evaluated at Iliff, CO in 2009 under two moisture regimes.
- F3's were evaluated at Iliff, CO in 2010 under two moisture regimes.

2009 FIELD TRIAL, ILIFF CO

- 232 entries
 - 161 B. juncea
 - 69 B. carinata
 - 2 occurrences of the commercial canola hybrid V1035

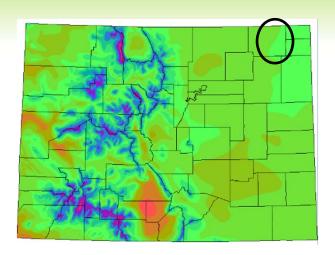
- Full and limited irrigation treatments, 2 reps/treatment
- Unusually wet year with small differences between wet and dry treatments. Means of 4 reps presented.

Brassica juncea Field Trial, Iliff, CO, 2009

Ample genetic variation observed among Brassica juncea for seed yield, oil and protein content, and glucosinolates.

	Yield (kg/ha)	% Oil	% Protein	Glucosinolates (uMol/g)
Juncea mean	981.9	36.1	31.2	102.8
Juncea min	213.6	28.3	25.3	39.7
Juncea max	1786.5	44.3	37.4	134.3
Carinata mean	763.9	31.8	35.4	119.2
V1035*	1149.4	43.8	29.0	11.0

* Commercial canola hybrid


HETEROSIS FOR SEED YIELD

High-parent heterosis for seed yield averaged

- 20.5% in crosses of 38 accessions with the 'double low' inbred line CBJ
- 17.4% in crosses of 60 accessions with the 'double low' line DZJ

2010 FIELD TRIAL, ILIFF CO

- 40 entries, based on 2009 results
 - 34 *B. juncea* (23 hybrids, 11 accessions)
 - 4 B. carinata
 - 2 occurrences of the commercial canola hybrid V1035

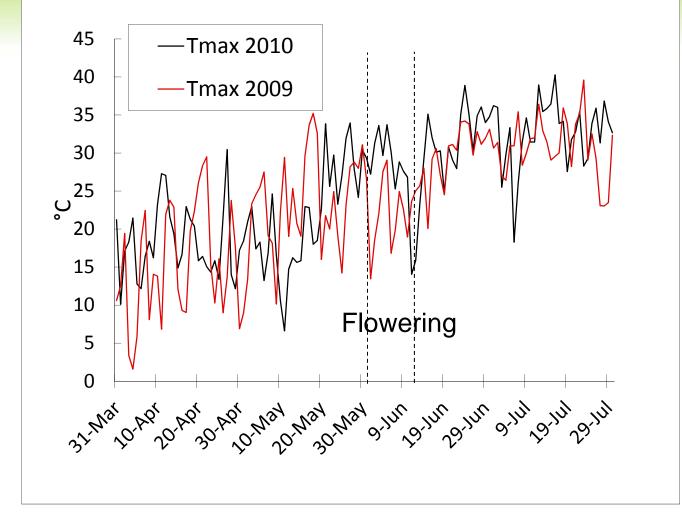
- Full and limited irrigation treatments, 2 reps/treatment
- Wet early season, hot and dry mid- to late season.

2010 FIELD TRIAL, ILIFF CO

2010 FIELD TRIAL, ILIFF CO, WET TREATMENT

	Yield, kg/ha	200 seed wt, g	Plant ht, cm	Days to flower
<i>Juncea</i> mean	761.4	0.427	131.0	67.1
<i>Juncea</i> min	194.5	0.265	101.6	57.5
<i>Juncea</i> max	1123.5	0.610	156.2	71.5
<i>Carinata</i> mean	779.9	0.534	126.4	70.4
V1035*	989.0	0.503	111.1	67.0

* Commercial canola hybrid


2010 FIELD TRIAL, ILIFF CO, DRY TREATMENT

Yield reduction of 39% over the whole trial

	Yield, kg/ha	200 seed wt, g	Plant ht, cm	Days to flower
<i>Juncea</i> mean	474.3	0.392	129.2	67.3
<i>Juncea</i> min	162.0	0.255	110.5	59.0
<i>Juncea</i> max	923.5	0.585	151.1	71.5
<i>Carinata</i> mean	270.0	0.443	104.8	70.9
V1035*	900.0	0.511	106.1	67.0

* Commercial canola hybrid

Max temperatures, Akron, CO, 2009 and 2010

Best performing *B. Juncea* entries, 2009 + 2010 Dry + 2010 Wet

Entry ID	Rank sum	Origin
DZJ01/Jr-002	13	Russia
Jr-009	18	Russia
Jr-002	18	Russia
Jr-006	22	Russia
DZJ01/Jr-006	28	Russia
DZJ01/Jr-008	31	Russia
CBJ01/Jc-017	31	China
DZJ01/Jr-007	38	Russia
Jr-012	39	Russia
CBJ01/Jb-009	40	China/Bangladesh

SUMMARY AND LOOKING FORWARD

- An active interdiscplinary oilseeds work group has been established at Colorado State.
- Three years of field trials of *B. juncea* and *B. carinata* have been completed.
- Reasonable levels of heterosis were observed in crosses of accessions with two double low lines.

SUMMARY AND LOOKING FORWARD

- Germplasm from Russia, both accessions and crosses, had the best performance over 2 years. Additional field trials are planned.
- Engine performance and emissions studies in relation to different oil profiles is underway.
- For the future:
 - Animal feeding trials
 - Economic analysis
 - Environmental assessment
 - Strengthen collaborations with domestic and international collaborators.

ACKNOWLEDGEMENTS

Superclusters[®] Clean Energy

