ESN effects on canola establishment, weed competition and canola yield in a four-year study

R.E. Blackshaw¹, X. Hao¹, G.W. Clayton¹, K.N. Harker², J.T. O'Donovan², E.N. Johnson³ and C. Vera⁴

Agriculture and Agri-Food Canada, Research Centres: 1Lethbridge, AB; 2Lacombe, AB; 3Scott, SK; and 4Melfort, SK, Canada

*

Introduction

- · Canola is grown on 6 million ha in western Canada
- · Herbicide-resistant and hybrid cultivars are widely grown
- · No-till practices predominate in this area
- · N fertilizer is a major input cost and can represent 60% of farm energy use
- · N demand may be higher for hybrid than open-pollinated cultivars
- · Farmers are interested in more effective and cost-efficient N fertilization strategies

Objective

Determine the merits of polymer-coated urea (Environmentally Smart Nitrogen ESNTM) applied at recommended and higher than recommended rates on weed management plus canola yield in a no-till system

Materials and methods

- A four-year field experiment was conducted at five sites on the Canadian prairies
- Treatments included a) hybrid and open pollinated (OP) canola, b) ESN and urea fertilizer, c) 100% and 150% of soil test N fertilizer rates, and d) 50% and 100% of in-crop herbicide rates
- Both canola cultivars were glufosinate-resistant and the 100% herbicide rate treatment consisted of glufosinate at 500 g ai ha⁻¹ plus clethodim at 15 g ai ha⁻¹
- N fertilizer was soil-banded 3 cm to the side and 5 cm below the seed row at seeding
- Canola was grown in rotation with barley in a no-till system and both crops of the rotation were grown each year
- Fertilizer form, fertilizer rate, and herbicide rate treatments were applied to the same plots in four consecutive years
- Canola and barley were arranged as split-blocks and all other treatments were arranged in a factorial design with four replications
- Data collected included canola density, canola and weed shoot N concentration determined at 4 and 8 WAE, weed biomass, canola yield, and canola oil concentration

Table 1. N fertilizer rates applied to attain 100% and 150% of soil test rates according to target canola yield at each site.

	Lethbridge		Lacombe		Beaverlodge		Melfort		Scott			
	100%	150%	100%	150%	100%	150%	100%	150%	100%	150%		
kg N ha-1												
2005	30	85	65	145	110	175		-	-	-		
2006	90	145	110	170	90	160	110	190	85	140		
2007	80	130	105	170	120	165	125	200	70	125		
2008	65	110	95	150	70	135	90	120	70	105		
2009							125	180	60	120		
2009		-	1			-	125	100	60	120		
†Target canola yields for Lethbridge, Lacombe, Beaverlodge, Melfort, and Scott were 1.7,												
2.5, 2.2, 2.5, and 1.7 T ha ⁻¹ , respectively.												

Results and discussion

Canola density

- · Canola plant density was not affected by any of the study treatments
- Fertilizer placed 3 cm to the side and 5 cm below the seed row was adequate physical separation preventing canola seedling injury

Canola tissue N concentration

- Canola N concentration was lower with ESN than urea in 7 of 11 site-years at 4 WAE and in 5 of 11 site-years at 8 WAE But these values remained above the 20 g kg⁻¹ threshold level at flowering required for optimum yield
- In 2 site-years where canola N concentration was the below the threshold value with the 100% N rate (with both ESN and urea), the 150% N fertilizer rate raised the N level above the 20 g kg⁻¹ threshold

Weed tissue N concentration (Table 2)

- N concentration of wild oat, wild buckwheat, and catchweed bedstraw was consistently greater with the 150% compared with the 100% N fertilizer rate
- N concentration of these weed species was often lower with ESN than with urea; potentially reducing weed competitiveness and/or increasing N availability to
 the crop

Weed biomass

rate

can

- Hybrid compared with OP canola reduced weed biomass in 13 of 16 site-years
- . The 50% herbicide rate increased weed biomass in 16 of 18 site-years
- · Weed biomass was often greater with 150% compared with 100% N rate but was unaffected by N fertilizer form

Canola vield (Table 3

- · Hybrid compared with OP canola gave higher yields in 15 of 20 site-years
- ESN and urea resulted in similar canola yields in 14 of 20 site-years
- · Canola yield was greater with ESN than with urea in 4 site-years with both cultivars and in 1 additional site-year with the hybrid cultivar
- · Canola yield was lower with ESN in 1 site-year
- An increase in N rate to 150% of the soil test increased the yield of both cultivars in 10 of 20 site-years and of hybrid canola in 3 additional site-years
- . The 50% herbicide rate reduced canola yield in 11 of 20 site-years

ble 2. Wild oat, wild buckw					Table 3. Canola yield	response to cu	iltivar, N fertil	ızer i	tormulat			
concentration (g kg-1) respo	onse to N	l fertilize	er form a	and N		Cultivar			N fo			
e determined 8 wk after en	nergence	when o	competi	ng with		OP†	Hybrid		Urea			
nola.												
	N formulation			ate				-				
	Urea†	ESN	100%	150%	Lethbridge							
Vild oat					2005	1230 b	1520 a		1390			
ethbridge					2006	2510 b	2690 a		2520			
005	27 a	24 b	25 b	28 a	2007	1020 b	1490 a		1230			
006	38 a	27 b	30 b	38 a	2008	1530 a	1650 a		1600			
007	19 a	16 b	15 b	19 a	Lacombe							
008	23 a	19 b	20 b	23 a	2005	3540 b	4280 a		3780			
acombe‡					2006	3210 a	3290 a		- 1			
005	34 a	30 b	29 b	35 a	2007	2020 b	2310 a		2230			
006	39 a	31 b	33 b	38 a	2008	2480 b	3460 a		3060			
008	41 a	35 b	35 b	41 a	Beaverlodge							
eaverlodge 005	21 a	16 b	16 b	21 a	2005	2570 b	3420 a		2900			
007	21 a 35 a	30 b	30 b	21 a 34 a	2006	960 b	1500 a		1220			
Vild buckwheat	30 a	30 0	30 0	34 d	2007	1420 b	1580 a		1600			
					2008	670 b	830 a		690			
ethbridge					Melfort	0.00	000 u		000			
005 006	20 a 38 a	15 b 25 b	15 b 28 b	20 a 36 a	2006	2300 b	2590 a		2470			
007	38 a 26 a	25 D 24 a	28 b	36 a	2007	2470 a	2360 a		2440			
008	20 a	18 b	19 b	20 a	2007	2470 a	2300 a 2130 a		2100			
acombe	25 a	100	100	22 0	2009	1530 a	1580 a		1590			
006	42 a	36 b	37 b	42 a		1530 a	1580 a		1590			
008	42 a	36 b	39 a	40 a	Scott							
eaverlodge					2006	2040 b	2360 a		2110			
005	31 a	27 b	25 b	33 a	2007	1910 b	2240 a		2020			
atchweed bedstraw					2008	1400 b	1720 a		1480			
eaverlodge					2009	640 b	1020 a		840			
007	38 a	35 b	36 a	37 a	†Means within a site,	year, and treatme	ent followed by	the	same let			
008	32 a	27 h	28 h	33 a	according to Fisher's							

†Means within a weed species, site, year, sampling time and treatment followed by the same letter are not significantly different (P > 0.05) according to Fisher's protected LSD

†Means within a site, year, and treatment followed by the same letter are not significantly different (P > 0.05) according to Fisher's protected LSD 4Canala yield was greater with ESN compared with urea fertilizer (3420 vs. 3160 kg har') with hybrid but not with OP

kg ha-1

1290 a

1240 a

1410 b

2410 a

2380 a

1510 a

2270 a

1590 a

820 a

3180 a

1430 b

2340 b

2090 a

2180 a

1920 b

1450 h

1200 a

2550 a

2240 a

1670 a

canola at Lacombe in 2006

"Canola yield was greater with 150% compared with 100% N fertilizer rate (2790 vs. 2510 kg ha⁻¹ at Melfort in 2007;
1720 vs. 1430 kg ha⁻¹ at Melfort in 2009; 1120 vs. 930 kg ha⁻¹ at Scott in 2009) with hybrid but not with OP canola

Conclusions

- · Advantages of hybrid canola compared with OP canola included reduced weed tissue N concentration, lower weed biomass, and higher canola yield
- The hypothesis that N demand would be greater with hybrid than OP canola was only supported in 3 of 20 site-years
- Both hybrid and OP canola had a positive yield response to the 150% N rate in 10 of 20 site-years growers may be under fertilizing their canola crops
- ESN compared with urea expressed neutral to positive benefits
- · weed N tissue concentration was often lower with ESN indicating that crop-weed competition for soil N might be reduced
- vegetative canola tissue N concentration was often lower with ESN but if soil N levels were higher later in the growing season this may benefit canola yield (occurred in 25% of the cases)
- canola seed oil concentration was unaffected by ESN vs. urea in 19 of 20 site-years

